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Abstract
We look at the problem in belief revision of trying to make inferences about what an agent believed—or will believe—at a
given moment, based on an observation of how the agent has responded to some sequence of previous belief revision inputs
over time. We adopt a ‘reverse engineering’ approach to this problem. Assuming a framework for iterated belief revision
which is based on sequences, we construct a model of the agent that ‘best explains’ the observation. Further considerations
on this best-explaining model then allow inferences about the agent’s epistemic behaviour to be made. We also provide an
algorithm which computes this best explanation.
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1 Introduction

The problem of belief revision, i.e. of how an agent should modify its (given) initial epistemic
state when encountering some new information which possibly contradicts its current beliefs about
the world, is by now a well-established research area in AI [1, 11]. Traditionally, the work in
this area is done from the agent’s perspective, being usually pre-occupied with constructing actual
revision operators which the agent might use and with rationality postulates which constrain how
these operators should behave. We want to change viewpoint and instead cast ourselves in the
role of an observer of the agent. Imagine the following scenario. We are given an observation
o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 of a particular agent, hereafter A, covering a certain length of time.
The ϕi and θi are sentences, the Di finite sets of sentences. The interpretation of o is that after having
received the revision inputs ϕ1,...,ϕi, A believed (at least) θi and did not believe any δ∈Di.1 In
contrast to the traditional work in belief revision, we are not given A’s initial state and only a very
partial description of the epistemic states after the revisions have taken place. A couple of questions

1This article extends work presented in [4] where only information about the beliefs of an agent after receiving a series
of revision inputs was considered, i.e. there ∀i :Di =∅ was assumed. The current article generalizes the results also taking
information about non-beliefs into account. Notation and definitions have been adapted accordingly.
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now suggest themselves:

• What did A believe immediately before it received the first input ϕ1?
• What did A believe after the ith input ϕi—apart from θi?
• What will A believe following a further revision input ϕn+1?

One area in which such questions might arise is in human–machine dialogues [9]. Here, it can be
useful for the machine to keep a model of the evolution of a user’s beliefs during a dialogue. The ϕi
correspond to inputs given to A—the user—by a machine, and the θi and Di are the user’s responses
or are somehow elicited from the user’s responses. For example, if A responds to ϕi with a question
‘Is δ true or not?’ then (assuming the user’s sincerity) we might infer the user is ignorant about the
truth of δ, i.e. δ and ¬δ are elements of Di. More generally, the problem of drawing conclusions about
the beliefs of other agents is interesting in any multi-agent setting. Successful interaction with others
can be supported by understanding them—not only in the present situation but also retrospectively.
Parts of the information about the other agent are represented in o which may have been obtained by
direct inquiry, observation or through other sources. Our aim in this article is to answer the questions
posed above.

Our strategy for dealing with them will be to adopt a ‘reverse engineering’approach—constructing
a model of the agent. (Similar approaches have already been tried in the context of trying to infer
an agent’s goals from observable actions, e.g. [6, 17].) Having no access to the agent’s internals,
we assume a belief revision framework A uses for determining its beliefs and for incorporating new
information, and construct a model of A that explains the observation about it. By considering this
model, we will then be able to make extra inferences or predictions about A’s epistemic behaviour.
Of course, this raises the problem of which belief revision framework to choose. Such a framework
will obviously need to support iterated revision [3, 7, 19, 23], and preferably also non-prioritized
revision [15, 22], i.e. revision in which new inputs are allowed to be rejected. In this article, we
restrict the investigation to one such framework that has been studied in [2, Section 6]. The idea
behind it is that an agent’s epistemic state [ρ,�] is made up of two components: (i) a sequence ρ
of sentences representing the sequence of revision inputs the agent has received thus far, and (ii) a
single sentence � standing for the agent’s set of core beliefs, which intuitively are those beliefs of
the agent it considers ‘untouchable’. The agent’s full set of beliefs in the epistemic state [ρ,�] is then
determined by a particular calculation on ρ and �, while new revision inputs are incorporated by
simply appending them to the end of ρ. Note that our choice of this framework does not imply that
others are less worthy of investigation. The challenge now becomes to find that particular model of
this form which best explains the observation we have made of A.

The plan of the article is as follows. In Section 2, we describe in more detail the model of epistemic
state we will be assuming. This will enable us to pose more precisely the problem we want to solve. We
will see that the problem essentially reduces to trying to guess what A’s initial epistemic state [ρ,�]
(i.e. before it received ϕ1) was. In Section 3, inspired by work done on reasoning with conditional
beliefs, we propose a way of finding the best initial sequence—or prefix—ρ(�) for any given fixed �.
Then, in Section 4 we focus on finding the best �. This will amount to equating best with logically
weakest. The epistemic state [ρ(�),�] obtained by combining our answers will be our proposed best
explanation for o, which we will call the rational explanation. In Section 5, we present an algorithm
which constructs the rational explanation for any given o, before giving some examples to show
the type of inferences this explanation leads to in Section 6. In Section 7, we discuss two papers
with similar topics before concluding and giving some pointers for future research in Section 8. An
appendix contains all proofs.
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2 Modelling the agent

We assume sentences α,β,γ,ϕ,θ,δ,�, etc. are elements of some finitely-generated propositional
language L. In our examples, p,q,r, etc. denote distinct propositional variables. The classical logical
entailment relation is denoted by �, while ≡ denotes classical logical equivalence. Wherever we use
a sentence to describe a belief set the intention is that it represents all its logical consequences. The
operation · denotes concatenation, so σ ·ρ is the concatenation of two sequences of sentences and
σ ·ϕ is the result of appending the sentence ϕ to σ .

Before we turn to the representation of the agent A itself, we want to introduce a function which we
will need later. f takes as argument a non-empty sequence σ = (αm,...,α1) of sentences and returns
a sentence.

f(αm,...,α1)=


α1 if m=1
αm ∧f(αm−1,...,α1) if m> 1 and αm ∧ f(αm−1,...,α1) 	�⊥
f(αm−1,...,α1) otherwise

f (σ ) is determined by first taking α1 and then going backwards through σ , adding each sentence
as we go, provided that sentence is consistent with what has been collected so far (cf. the ‘linear
base-revision operation’ of [24] and the ‘basic memory operator’ of [16]). Note in particular that the
calculation does not stop at the first sentence that would cause an inconsistency (cf. ‘cut base-revision’
of [24]). It is simply left out and the next one is considered. Some useful properties of f are listed in
the appendix. The next definition summarizes the revision framework we assume the observed agent
A to employ.

Definition 2.1
The epistemic state [ρ,�] of an agent consists of a sequence of sentences ρ and a sentence � which
is called core belief. The set of beliefs of an agent in the epistemic state [ρ,�] is Bel([ρ,�])= f(ρ ·�).
The epistemic state resulting from revising [ρ,�] by a sentence λ is [ρ,�]∗λ= [ρ ·λ,�].

As indicated in the introduction, this definition follows [2] for representing an agent. Refs [16, 19]
also use sequences to represent epistemic states, but without core beliefs. We will refer to the elements
of the agent’s belief set Bel([ρ,�]) as beliefs and to sentences not contained in the belief set as non-
beliefs. When calculating its beliefs from its epistemic state [ρ,�], an agent gives highest priority
to �. After that, it prioritizes more recent information received, ignoring sentences that would cause
an inconsistency. Note that � is always believed, and that Bel([ρ,�]) is inconsistent if and only if
� is inconsistent. Revision is done by appending the input to ρ. This makes the framework a slight
variation of linear base-revision [24]. Instead of appending the input to the sequence of sentences
as is done there, here the input is inserted in the last but one position. The core belief is always
considered more important and could thus also be interpreted as the very last input received.

Example 2.2
Consider �=¬p and ρ= (q,q→p,p∧r). Bel([ρ,�])= f(q,q→p,p∧r,¬p). In order to determine
f(q,q→p,p∧r,¬p) we need to know if q is consistent with f(q→p,p∧r,¬p). As f(¬p)=¬p is
inconsistent with p∧r, the latter sentence is ignored and f(p∧r,¬p)=¬p. q→p is consistent with
¬p and so f(q→p,p∧q,¬p)= (q→p)∧¬p≡¬q∧¬p . So q is inconsistent with f(q→p,p∧r,¬p)
and we get Bel([ρ,�])≡¬q∧¬p.

Core beliefs are considered in order to allow for non-prioritized revision. A new input λ will
not always be believed in the new state. Indeed (when � is consistent) λ will be believed only
if it is consistent with �. If it contradicts � then it still takes its place in the epistemic state
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but it will not be believed, and in fact in this case the agent’s belief set will remain unchanged
(cf. screened revision [22]). Note also that � remains unaffected by a revision input, i.e. ∗ is a
core-invariant revision operator [2].2

As is shown in [2], the above revision method satisfies several natural properties. In particular, it
stays largely faithful to the AGM postulates [11] (leaving aside the ‘success’ postulate, which forces
all new inputs to be believed), and satisfies slight, ‘non-prioritized’ variants of several postulates for
iterated revision which have been proposed, including those of [7]. One characteristic property of
this method is the following variant of the rule ‘Recalcitrance’ from [23]:

If � 	� (λ2 →¬λ1) then Bel([ρ,�]∗λ1 ∗λ2)�λ1

This entails if the agent believes an input λ1, then it does so wholeheartedly, in that the only way it
can be dislodged from the belief set by a succeeding input λ2 is if that input contradicts it given the
core beliefs �. We will now turn to the observation we can make of an agent.

Definition 2.3
An observation o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 is a sequence of triples (ϕi,θi,Di) where ϕi and
θi are sentences and Di is a finite sets of sentences, 1≤ i≤n. The set of all possible observations
(for all n≥0) is denoted by O.

The interpretation of an observation o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 is that after the agent A has
received the inputs ϕ1,...,ϕi in an initial epistemic state [ρ,�], it believes at least θi and believes no
element of Di. Throughout this article, we make the assumptions that A received no input between
ϕ1 and ϕn other than those listed, and that the θi and δ∈Di are correct descriptions of A’s beliefs and
non-beliefs after each input. That is, o provides (partial) information about the beliefs and non-beliefs
of an agent through a sequence of revisions. After receiving the i-th input ϕi, A’s epistemic state
must be [ρ ·(ϕ1,...,ϕi),�] and its belief set Bel([ρ,�]∗ϕ1 ∗···∗ϕi)= f(ρ ·(ϕ1,...,ϕi,�)). [ρ,�]
is A’s unknown initial (i.e. before ϕ1) epistemic state. The intuitive reading of an observation is
captured formally by

for all i such that 1≤ i≤n :
Bel([ρ,�]∗ϕ1 ∗···∗ϕi)�θi and
∀δ∈Di :Bel([ρ,�]∗ϕ1 ∗···∗ϕi) 	�δ.

(1)

The following definition formalizes when we consider an epistemic state to explain an observation.

Definition 2.4
Let o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉∈O. Then [ρ,�] explains o (or is an explanation for o) if and
only if � 	≡⊥ and (1) above holds. We say � is an o−acceptable core if and only if [ρ,�] explains
o for some ρ.

Note that in our agent model we do not prohibit the core belief � to be inconsistent, in which
case A would believe everything at any point in time. �≡⊥ satisfies (1) using any sequence ρ
if and only if Di =∅ for all i. As mentioned before, in [4] we considered observations without
information about the non-beliefs which amounts to precisely this condition. As a consequence,
there ⊥ was considered o-acceptable for any observation. There are technical reasons for eliminating
the possibility of ⊥ being o-acceptable, but there is also an intuitive argument. We believe that it is
better to say that we do not have an explanation rather than claiming the agent to be inconsistent.

2In fact the model of [2] allows the core itself to be revisable. We do not explore this possibility here.
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Example 2.5
(i) [ρ,�]= [(p→q),r] explains 〈(p,q,∅),(q,r,∅)〉 because f(p→q,p,r) entails q and f(p→q,p,q,r)
entails r (both are equivalent to p∧q∧r).
(ii) [(p→q),�] does not explain 〈(p,q,∅),(q,r,∅)〉 because f(p→q,p,q,�)≡p∧q 	�r.
(iii) [(p→q),�] does not explain 〈(p,�,{q})〉 because f(p→q,p,�)≡p∧q�q.

If we had some explanation [ρ,�] for o then we would be able to answer the questions in the
introduction: following a new input ϕn+1 A will believe f(ρ ·(ϕ1,...,ϕn,ϕn+1,�)), before receiving
the first input A believes f(ρ ·�), and the beliefs after the i-th input are f(ρ ·(ϕ1,...,ϕi,�)). However,
not all observations have an explanation, 〈(p,�,{p,¬p})〉 probably being the simplest example. One
property of the assumed belief revision framework is that for every input ϕ received by an agent
either ϕ or ¬ϕ is believed henceforth, but the observation would require the violation of that property.

Our job now is to choose, from the space of possible explanations for o, the best one.As a guideline,
we consider an explanation good if it only makes necessary (or minimal) assumptions about what
A believes. But how do we find this best one? Our strategy is to split the problem into two parts,
handling ρ and � separately. First, (i) given a fixed o-acceptable core �, find a best sequence ρ(o,�)
such that [ρ,�] explains o, then, (ii) find a best o-acceptable core �(o). Our best explanation for o
will then be [ρ(o,�(o)),�(o)].

3 Finding ρ

Given o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉, let us assume a fixed core �. To find that sequence ρ(o,�)
such that [ρ(o,�),�] is the best explanation for o, given �, we will take inspiration from work done
in the area of non-monotonic reasoning on reasoning with conditional information.

Let’s say a pair (λ,χ ) of sentences is a conditional belief in the state [ρ,�] if and only if χ would
be believed after revising [ρ,�] by λ, i.e. Bel([ρ,�]∗λ)�χ . In this case, we will write λ⇒[ρ,�]χ .3

This relation plays an important role, because it turns out A’s beliefs following any sequence of
revision inputs starting from [ρ,�] is determined entirely by the set ⇒[ρ,�] of conditional beliefs
in [ρ,�]. This is because, using the definitions for calculating the belief set, revision and Proposition
A.1 (i) from the appendix, we can show that, for any sequence of revision inputs ϕ1,...,ϕi, our
revision method satisfies

Bel([ρ,�]∗ϕ1 ∗···∗ϕi)=Bel([ρ,�]∗f(ϕ1,...,ϕi,�)).4

Thus, as far as their effects on the belief set go, a sequence of revision inputs starting from [ρ,�]
can always be reduced to a single input. All this means observation o may be translated into a partial
description of the set of conditional beliefs that A has in its initial epistemic state and the set of
conditional beliefs that A does not have in its initial epistemic state. C�(o) contains the known
positive conditionals, N�(o) the known negative ones:

C�(o)={f(ϕ1,...,ϕi,�)⇒θi | i=1,...,n},

N�(o)={f(ϕ1,...,ϕi,�)⇒δ | i=1,...,n∧δ∈Di}.

3The relation ⇒[ρ,�] almost satisfies all the rules of a rational inference relation [20]. More precisely the modified version
does, viz. λ⇒′

[ρ,�]χ if and only if [��¬λ or λ⇒[ρ,�]χ ].
4The key to this result is that f(f(ϕ1,...,ϕi,�),�)≡ f(ϕ1,...,ϕi,�). This is because f(ϕ1,...,ϕi,�)�� and hence

f(f(ϕ1,...,ϕi,�),�)= f(ϕ1,...,ϕi,�)∧�≡ f(ϕ1,...,ϕi,�).
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We want to stress that the set of conditional beliefs ⇒[ρ,�]∗λ in the state [ρ,�]∗λ following revision
by λwill generally not be the same as ⇒[ρ,�]. For this reason, we will always consider the conditional
beliefs with respect to the unknown initial state [ρ,�]. That way, we get much information concerning
one relation rather than little information concerning many different relations. As we will deal with
conditionals talking about the same state, we will omit the subscript for readability and write ⇒
instead of ⇒[ρ,�].

Clearly, if we had access to the complete set of A’s conditional beliefs in its initial state, this would
give another way to answer the questions of the introduction. Now, the problem of determining which
conditional beliefs follow from a given set C of positive conditional beliefs has been well-studied
and several solutions have been proposed, e.g. [12, 18]. One particularly elegant and well-motivated
solution is to take the rational closure ofC [20]. Furthermore, as is shown in, e.g. [10], this construction
is amenable to a relatively simple representation as a sequence of sentences! As the original rational
closure construction is not capable of dealing with negative information, we will use the generalized
version that was proposed in [5] which again gives rise to a sequence of sentences. Our idea is
essentially to take ρ(o,�) to be this sequence corresponding to the rational closure of C�(o) and
N�(o). First let us describe the general construction.

3.1 The rational closure of a set of (positive and negative) conditionals

We will now briefly recall the rational closure construction from [5]. It works with arbitrary sets
of positive and negative conditionals, not just those calculated as C�(o) and N�(o) are. Given a
set of conditionals C ={λi ⇒χi | i=1,...,l} we denote by C̃ the set of material counterparts of all
the conditionals in C, i.e. C̃ ={λi →χi | i=1,...,l}. A conditional λ⇒χ is p-exceptional for a set of
sentences U if and only if U �¬λ. λ⇒χ is n-exceptional for U if and only if U ∪{λ}�χ .

Now assume we are given a set C of positive conditionals and a set N of negative ones. The
rational closure ρR(C,N ) of C and N is determined as follows. We define two decreasing sets of
conditionals C0 ⊇C1 ⊇···⊇Cm and N0 ⊇N1 ⊇···⊇Nm and a decreasing set of sentences U0 ⊇U1
⊇···⊇Um—the Ui will be defined via a least fixpoint construction.

Definition 3.1
Let C be a set of positive conditionals and N a set of negative ones. Then the (sequence corresponding
to the) rational closure ρR(C,N ) of C and N is ρR(C,N )= (

∧
Um,

∧
Um−1,...,

∧
U0) where

1. C0 =C and N0 =N
2. Ui is the smallest set which contains C̃i and which is closed under the following condition

If λ⇒χ is in Ni and λ⇒χ is n-exceptional for Ui then ¬λ∈Ui.
3. Ci+1 is the set of conditionals in Ci that are p-exceptional for Ui and

Ni+1 is the set of conditionals in Ni that are n-exceptional for Ui
4. m is minimal such that Cm =Cm+1 and Nm =Nm+1

This definition contains a reformulation of the rational closure construction from [5]. Step 2 above
may be explained as follows. Ui is initialized with C̃i. Then we go through all the negative conditionals
in Ni. If there is a conditional λ⇒χ that is n-exceptional for Ui, which means that adding λ to Ui
would lead χ to become inferable, its negated antecedent ¬λ is added to Ui. The addition of these
¬λ may lead other negative conditionals in Ni to become n-exceptional, so we then need to check
Ni for conditionals that are n-exceptional for the set thus obtained. This process stops if no further
sentence had to be added.
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If N =∅ in the above process then the process simplifies to the one given in, e.g. [4, 10] which
handles the case of positive conditionals only. The idea of the construction is that the Ui ensure
that positive conditionals λ⇒χ are satisfied, i.e. χ is believed after revision by λ, while negative
conditionals λ⇒χ ′ are not, i.e. here χ ′ is not believed after the revision. This is achieved by Ui
containing λ→χ making χ inferable if λ is added (resp. containing ¬λ in case adding λ makes χ ′
inferable). Different Ui take care of different positive conditionals and if a positive conditional is
p-exceptional for Ui we know that it cannot be satisfied using Ui.

Writing αi for
∧

Ui, the rational closure of C and N is then the relation ⇒R given by λ⇒Rχ if
and only if either αm �¬λ or

[
αj ∧λ�χ where j is minimal such that αj 	�¬λ]. Since α0 �···�αm it

easy to check that in fact this second disjunct is equivalent to f(αm,...,α0,λ)�χ . As is shown in [5],
⇒R ‘satisfies’ all the conditionals in C and N , in the sense that λ⇒Rχ for all positive conditionals
λ⇒χ in C, while λ 	⇒Rχ for all negative conditionals λ⇒χ in N .

We now make the following definition:

Definition 3.2
Let o∈O and �∈L. We call ρR(C�(o),N�(o)) the rational prefix of o with respect to �, and will
denote it by ρR(o,�).

Example 3.3
(i) Let o=〈(p,s,∅),(q,�,{s}),(r,¬q,∅)〉 and �=�. o says that after receiving p the agent believed
s, but after then receiving q does not believe s anymore. Finally, after receiving r it believes ¬q. This
translates into:

C0 =C�(o) ={f(p,�)⇒s,f(p,q,�)⇒�,f(p,q,r,�)⇒¬q}
={p⇒s,p∧q⇒�,p∧q∧r ⇒¬q}

N0 =N�(o) ={f(p,q,�)⇒s}
={p∧q⇒s}

So, C̃0 ={p→s,p∧q→�,p∧q∧r →¬q} and p∧q⇒s is n-exceptional for that set as {p→s,
p∧q}�s. Hence U0 ={p→s,p∧q→�,p∧q∧r →¬q,¬(p∧q)}.

Of the positive conditionals only p⇒s is not p-exceptional for U0, as ¬(p∧q)�¬(p∧q) and
p∧q∧r →¬q�¬(p∧q∧r). p∧q⇒s is n-exceptional for U0 as {p→s,p∧q}�s, so C1 ={p∧q⇒
�,p∧q∧r ⇒¬q} and N1 ={p∧q⇒s}.

This time U1 = C̃1 ={p∧q→�,p∧q∧r →¬q} as adding p∧q does not make s inferable,
anymore. Only p∧q∧r ⇒¬q is exceptional for U1. As indicated above, p∧q∧r ⇒¬q is in
a sense exceptional for itself because p∧q∧r is inconsistent with p∧q∧r →¬q. So we have
C2 ={p∧q∧r ⇒¬q}=C3, N2 =∅=N3 and U2 ={p∧q∧r →¬q}=U3. Here, the calculation stops,
as the sets do not change and (omitting conditionals whose material counterparts are tautologies) we
get ρR(o,�)= (

∧
U2,

∧
U1,

∧
U0)=

(p∧q∧r →¬q , p∧q∧r →¬q , (p→s)∧(p∧q∧r →¬q)∧¬(p∧q)).
Using logical equivalences this is the same as (p∧q→¬r , p∧q→¬r , p→ (s∧¬q)).

(ii) For any observation o, if �≡⊥ then ρR(o,�)= (�). This is because the antecedent
λ= f(ϕ1,...,ϕi,�) of any conditional will be inconsistent, so the negated antecedents of any negative
conditional as well as the material counterpart of any positive conditional will be tautologies.
Consequently,

∧
Uj will always be a tautology. But also any conditional will be exceptional for

U0. This is because U0 �¬λ for any positive conditional λ⇒χ (as λ≡⊥), and U0 ∪{λ}�δ for
any δ showing that negative conditionals are exceptional, as well. Hence, C1 =C0 and N1 =N0.
So, ρR(o,�)= (

∧
U0)= (�).
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Now, an interesting thing to note about the rational prefix construction is that it actually goes through
independently of whether � is o-acceptable. In fact, a useful side-effect of the construction is that
it actually reveals whether � is o-acceptable. Given we have constructed ρR(o,�)= (αm,...,α0), all
we have to do is to look at sentence αm and check if it is a tautology:

Proposition 3.4
Let o∈O and �∈L, and let ρR(o,�)= (αm,...,α0) be the rational prefix of o with respect to �. Then
(i) if � 	≡⊥ and αm ≡� then [ρR(o,�),�] is an explanation for o.
(ii) if �≡⊥ or αm 	≡� then � is not an o-acceptable core.

Thus, this proposition gives us a necessary and sufficient condition for � to be an o-acceptable
core. This will be used in the algorithm of Section 5. In Example 3.3 (i), the weakest element
α2 =p∧q∧r →¬q of ρR(o,�) is not a tautology. The above proposition implies that � is not an
o-acceptable core. This can be easily seen as f(σ ·(p,q,r,�))�p∧q∧r for any sequence σ so ¬q
cannot be consistently believed after the last input has been received. In Example 5.4, we will see
that an o-acceptable core does nevertheless exist.

3.2 Justification for using the rational prefix

In the rest of this section, we assume � to be some fixed o-acceptable core. As we just saw,
[ρR(o,�),�] then provides an explanation for o given this �. In this section, we want to show in
precisely what sense it could be regarded as a best explanation given �. Let�={σ | [σ,�] explains o}.

One way to compare sequences in� is by focusing on the trace of belief sets they (in combination
with �) induce through o, i.e. for each σ ∈� we can consider the sequence (Belσ0 ,Belσ1 ,...,Belσn ),
where Belσi is defined to be the beliefs after the i-th input in o (under the explanation [σ,�]). In other
words Belσi = f(σ ·(ϕ1,...,ϕi,�)), Belσ0 giving the initial belief set.

Example 3.5
Let o=〈(p,s,∅),(q,�,{s})〉, �=p→¬q and σ = (p→s). Then the belief trace (Belσ0 ,Belσ1 ,Belσ2 ) is
(p→ (s∧¬q),p∧¬q∧s,q∧¬p).

The idea would then be to define a preference relation �1 over the sequences in � (with more
preferred sequences corresponding to those ‘lower’ in the ordering) via some preference relation over
their set of associated belief traces. Given any two possible belief traces (β0,...,βn) and (γ0,...,γn),
let us write (β0,...,βn)≤lex (γ0,...,γn) if and only if, for all i=0,...,n,

[
βj ≡γj for all j< i implies

γi �βi
]
. Note that if two sequences are equivalent up to i−1 and neither βi �γi nor γi �βi then the

two are simply incomparable with respect to ≤lex. Then we define, for any ρ,σ ∈�:

ρ�1 σ iff (Belρ0 ,...,Belρn )≤lex (Belσ0 ,...,Belσn ).

�1 is a pre-order, i.e. a reflexive and transitive relation, on �. Thus, given two sequences in �, we
prefer that one which leads to A having fewer (i.e. weaker) beliefs before any of the inputs ϕi were
received. If the two sequences lead to equivalent beliefs at this initial stage, then we prefer that which
leads to A having fewer beliefs after ϕ1 was received. If they lead to equivalent beliefs also after
this stage, then we prefer that which leads to A having fewer beliefs after ϕ2 was received, and so
on. Thus, under this ordering, we prefer sequences which induce A to have fewer beliefs, earlier in
o. The next result shows ρR(o,�) is one among several best elements in � under this ordering.5

5There are always many different sequences that induce the same belief trace given a sequence of revision inputs. Consider
[(p→q),�] and [(p∧¬q∧r,p→q),�] both of which explain 〈(p,q,∅)〉 as their belief traces are (p→q,p∧q). The first state



Reconstructing an Agent’s Epistemic State from Observations about its Beliefs and Non-beliefs 763

Theorem 3.6
ρR(o,�)�1 σ for all σ ∈�.

That Theorem 3.6 holds is thanks essentially to the minimization which is already at play in the
rational closure construction. Every rational inference relation may be specified by an ordering of
‘naturalness’, or ‘ plausibility’ on the set of propositional worlds [20]. Then, as is shown in [5, 20],
the rational closure of a given set of positive (C) and negative (N ) conditionals corresponds to that
ordering which assumes worlds to be as natural as C and N will allow. As a consequence of this,
e.g. the rational closure ⇒R enjoys the property that �⇒R λ only if �⇒λ for all rational inference
relations satisfying C and N . And in Theorem 3.6, this particular property is responsible for the fact
that Belσ0 �BelρR

0 for all σ ∈�.
Another way to compare sequences is to look at their consequences for predicting what will happen

at the next step after o.

ρ�2 σ iff Bel([σ,�]∗ϕ1 ∗···∗ϕn ∗λ)�Bel([ρ,�]∗ϕ1 ∗···∗ϕn ∗λ) for all λ

Thus, according to this preference criterion we prefer ρ to σ if it always leads to fewer beliefs being
predicted after the next revision input. Recall that in the assumed belief revision framework the
beliefs after a sequence of revisions can be obtained via a single revision. That is, this criterion is
also about any sequence of further revisions. It turns out ρR(o,�) is a most preferred element under
�2 amongst all minimal elements under �1.

Theorem 3.7
For all σ ∈�, if σ �1ρR(o,�) then ρR(o,�)�2 σ .

Thus if we take a lexicographic combination of �1 and �2 (with �1 being considered as more
important), ρR(o,�) emerges overall as a best, most preferred, member of �. Consequently, these
theorems point out a single best explanation given an observation o and an o-acceptable core. This
explanation is not unique but any other optimal one will yield exactly the same belief trace. Having
provided a method for finding the best explanation [ρ,�] given �, we now turn our attention to
finding the best � itself.

4 Minimizing �
As argued earlier, core beliefs are needed, but at the same time we try to minimize the assumptions
about the agent’s beliefs. This includes minimizing �. The first idea would be to simply take the
disjunction of all possible o-acceptable cores, i.e. to take �∨(o), defined by

�∨(o)≡
∨

{� |� is o-acceptable}.

First note that �∨(o) is inconsistent if and only if there is no o-acceptable core as
∨∅≡⊥. So

from �∨(o) being consistent we can read off that there is an explanation. But is �∨(o) itself
o-acceptable in this case? Thankfully the answer is yes, a result which follows (in our finite setting)
from the following proposition which says that the family of o-acceptable cores is closed under
disjunctions.

corresponds to the rational explanation of the observation and it will yield a weaker belief than the other one when considering
a further input p∧¬q.
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Proposition 4.1
If �1 and �2 are o-acceptable then so is �1 ∨�2.

So as a corollary �∨(o) does indeed satisfy:

(Acceptability) If an o-acceptable core exists then �(o) is o-acceptable

What other properties does �∨(o) satisfy?

(Consistency) If �(o) 	≡⊥ then there is an o-acceptable core.

If we are returned a consistent sentence, we want to be guaranteed that an explanation does indeed
exist. Acceptability and Consistency would appear to be absolute rock-bottom properties which we
would expect of any method for finding a good o-acceptable core, as they express that �(o) yields
an o-acceptable core if and only if such a core exists. However for �∨ we can say more. Given two
observations o and o′, recall that o·o′ denotes the concatenation of o and o′. We shall use o�right o′
to denote that o′ right extends o., i.e. o′ =o·o′′ for some (possibly empty) o′′ ∈O, and o�left o′ to
denote o′ left extends o, i.e. o′ =o′′ ·o for some (possibly empty) o′′ ∈O.

Proposition 4.2
Suppose o�right o′ or o�left o′. Then every o′-acceptable core is an o-acceptable core.

As a result of this we see �∨ satisfies the following two properties, which say extending the
observation into the future or past leads only to a logically stronger core being returned.

(Right Monotony) If o�right o′ then �(o′)��(o)
(Left Monotony) If o�left o′ then �(o′)��(o).

Right- and Left Monotony provide ways of expressing that �(o) leads only to safe conclusions that
something is a core belief of A—conclusions that cannot be ‘defeated’ by additional information
about A that might come along in the form of observations prior to, or after o.

We should point out, though, that it is not the case that by inserting any observation anywhere
in o, �∨ will always lead to a logically stronger core. Consider o1 =〈(p,p,∅),(q,¬p,∅)〉
and o2 = 〈(p,p,∅),(¬p,¬p,∅),(q,¬p,∅)〉, i.e. (¬p,¬p,∅) was inserted in the middle of o1.
�∨(o1)≡q→¬p whereas �∨(o2)≡�. So although o2 extends o1 in a sense, the corresponding
�∨ is actually weaker. Looking at o1, assuming as we do that A received no inputs between p
and q, the only way to explain the end belief in ¬p is to ascribe core belief q→¬p to A (cf. the
‘Recalcitrance’ rule in Section 2). However, looking at o2, the information that A received (and
believed) the intermediate input ¬p is enough to ‘explain away’ this end belief without recourse
to core beliefs. Our assumption that A received no other inputs between ϕ1 and ϕn during an
observation o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 is rather strong. It amounts to saying that, during o,
we kept our eye on A the whole time. The above example shows that relaxing this assumption gives
us an extra degree of freedom with which to explain o, via the inference of intermediate inputs (the
first steps of an investigation can be found in [25]).

It turns out the above four properties are enough to actually characterise �∨. In fact, given the
first two, just one of Right- and Left Monotony is sufficient for this task:

Proposition 4.3
Let � :O→L be any function which returns a sentence given any o∈O. Then the following are
equivalent:
(i) � satisfies Acceptability, Consistency and Right Monotony.
(ii) � satisfies Acceptability, Consistency and Left Monotony.
(iii) �(o)≡�∨(o) for all o∈O.
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Note that as a corollary to this proposition we get the surprising result that, in the presence
of Acceptability and Consistency, Right- and Left Monotony are in fact equivalent. Combining the
findings of the last two sections, we are now ready to announce our candidate for the best explanation
for o. By analogy with ‘rational closure’, we make the following definition:

Definition 4.4
Let o∈O be an observation for which an o-acceptable core exists. Then we call [ρR(o,�∨(o)),�∨(o)]
the rational explanation for o.

In Section 6, we will give some examples of what we can infer about A under the rational explanation.
But how might we find it in practice? The next section gives an algorithm for just that.

5 Constructing the rational explanation

The idea behind the algorithm is as follows. Given an observation o, we start with the weakest possible
core �0 =� and construct the rational prefix (αm,...,α0)=ρ0 of o with respect to �0. We then check
whether αm is a tautology. If it is then we know by Proposition 3.4 that [ρ0,�0] is an explanation
for o and so we stop and return this as output. If it is not then Proposition 3.4 tells us �0 cannot
be o-acceptable. In this case, we modify �0 by conjoining αm to it, i.e. by setting �1 =�0 ∧αm.
Constructing the rational prefix of o with respect to the new core then leads to a different prefix,
which can be dealt with the same way.

Algorithm 1: calculation of the rational explanation
Input: observation o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉
Output: the rational explanation for o

�⇐�
repeat

ρ⇐ρR(o,�) /* ρ= (αm,...,α0) */
�⇐�∧αm

until αm ≡�
return [ρ,�] if � 	≡⊥, “no explanation” otherwise

Before showing that the output of this algorithm matches the rational explanation, we need to be
sure it always terminates. This is a consequence of the following:

Lemma 5.1
Let � and αm be as after the calculation of ρR(o,�). If αm 	≡� then � 	≡�∧αm.

This result assures us that if the termination condition of the algorithm does not hold, the new core
will be strictly logically stronger than the previous one. Thus the cores generated by the algorithm
become progressively strictly stronger. In our setting, in which we assumed a finite propositional
language, this means, in the worst case, the process will continue until �≡⊥ in which case the
rational prefix will be (�), as shown in Example 3.3 (ii), and the calculation terminates.

Now, to show the output matches the rational explanation in case an explanation exists, consider
the sequence [ρ0,�0],...,[ρk,�k] of epistemic states generated by the algorithm. We need to show
�k ≡�∨(o). The direction �k ��∨(o) follows from the fact that [ρk,�k] is an explanation for o and
so �k is an o-acceptable core. The converse �∨(o)��k is proved by showing inductively that
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�∨(o)��i for each i=0,...,k: the case i=0 clearly holds since �0 ≡�. The inductive step uses the
following property:

Lemma 5.2
Let 0< i≤k and suppose ρi−1 = (αm,...,α0). Then, for any o-acceptable core �′, if �′ ��i−1 then
�′ �αm.

This enables us to prove that, given �∨(o)��i−1, we must also have �∨(o)��i. Thus �∨(o)��k
as required. This lemma does not depend on o having an explanation, i.e. if �k ≡⊥ we still have
�∨(o)��k . Hence, if the algorithm tells us there is no explanation for o, then indeed there is no
o-acceptable core. Since obviously ρk is the rational prefix of o with respect to �k by construction,
we have:

Proposition 5.3
Given an observation o for which an o-acceptable core exists, the algorithm outputs the rational
explanation for o.

Example 5.4
Let o=〈(p,s,∅),(q,�,{s}),(r,¬q,∅)〉 as in Example 3.3 (i). Starting with �=�, we get ρR(o,�)=
(p∧q∧r →¬q,p∧q∧r →¬q,(p→s)∧(p∧q∧r →¬q)∧¬(p∧q)) as shown in that example.αm =
α2 =p∧q∧r →¬q≡¬p∨¬q∨¬r is not a tautology, so we need to modify the core to �=¬p∨
¬q∨¬r. Consequently, we get the following sets of conditionals for the second iteration.

C0 =C�(o) ={f(p,¬p∨¬q∨¬r)⇒s,f(p,q,¬p∨¬q∨¬r)⇒�,
f(p,q,r,¬p∨¬q∨¬r)⇒¬q}

={p∧(¬q∨¬r)⇒s,p∧q∧¬r ⇒�,¬p∧q∧r ⇒¬q}
N0 =N�(o) ={f(p,q,¬p∨¬q∨¬r)⇒s}

={p∧q∧¬r ⇒s}
p∧q∧¬r ⇒s is n-exceptional for C̃0 as {p∧(¬q∨¬r)→s,p∧q∧¬r}�s, so U0 ={p∧

(¬q∨¬r)→s,p∧q∧¬r →�,¬p∧q∧r →¬q,¬(p∧q∧¬r)}. Only p∧(¬q∨¬r)⇒s is not
p-exceptional for U0, so we get

C1 ={p∧q∧¬r ⇒�,¬p∧q∧r ⇒¬q}
N1 ={p∧q∧¬r ⇒s}

Note that this time p∧q∧¬r ⇒s is not n-exceptional for C̃1 so U1 ={p∧q∧¬r →�,¬p∧q∧
r →¬q}. Only ¬p∧q∧r ⇒¬q is p-exceptional for U1 (in fact again the material counterpart of this
conditional is inconsistent with its own antecedent) so we get

C2 =C3 ={¬p∧q∧r ⇒¬q}
N2 =N3 =∅
U2 =U3 ={¬p∧q∧r →¬q}

Again α2 ≡p∨¬q∨¬r 	≡�, so the core belief has to be adapted once more. Conjoining the old
one with α2 leads to a core that is equivalent to �=¬q∨¬r, so this time the conditionals look as
follows

C0 =C�(o) ={f(p,¬q∨¬r)⇒s,f(p,q,¬q∨¬r)⇒�,
f(p,q,r,¬q∨¬r)⇒¬q}

={p∧(¬q∨¬r)⇒s,p∧q∧¬r ⇒�,p∧¬q∧r ⇒¬q}
N0 =N�(o) ={f(p,q,¬q∨¬r)⇒s}

={p∧q∧¬r ⇒s}
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So, C̃0 ={p∧(¬q∨¬r)→s,p∧q∧¬r →�,p∧¬q∧r →¬q}, the last two implications being
tautologies. p∧q∧¬r ⇒s is n-exceptional for that set as {p∧(¬q∨¬r)→s,p∧q∧¬r}�s.
Hence U0 ={p∧(¬q∨¬r)→s,p∧q∧¬r →�,p∧¬q∧r →¬q,¬(p∧q∧¬r)}. p∧q∧¬r ⇒� is
p-exceptional for U0 as we had to add the negated antecedent of the only negative conditional.
However, the other positive conditionals are not p-exceptional for U0 so we get C1 ={p∧q∧¬r ⇒�},
N1 ={p∧q∧¬r ⇒s}. C̃1 amounts to {�} and none of the remaining two conditionals is exceptional
for that set. Hence we get U1 ={�} and C2 =C3 =∅, N2 =N3 =∅ and U2 =U3 =∅.As a consequence,
we get ρR(o,�)= (�,�,(p∧(¬q∨¬r)→s)∧¬(p∧q∧¬r)). As this means α2 =�, no further run is
necessary and the rational explanation for o is [(�,�,(p∧(¬q∨¬r)→s)∧¬(p∧q∧¬r)),¬q∨¬r].

((¬q∨¬r)∧(p→s∧¬q),p∧¬q∧s,p∧q∧¬r,p∧¬q∧r∧s) is the belief trace according to this
explanation. The core belief must entail ¬q∨¬r as otherwise due to ‘Recalcitrance’ A would have
to believe q after receiving r but the observation tells us the opposite. Further, nothing indicates
that � would have to be stronger than that. Initially, the agent also believes p→s∧¬q. The belief
in p→s is clear as after hearing p the agent believes s and p alone does not entail s. The belief in
p→¬q is more subtle and is best explained when looking at the beliefs after the first revision input
was received. The beliefs in p and s are clear, but why should A commit to ¬q? If it did not then
q would be consistent with the current beliefs and revision by q would turn out to be an expansion of
the belief set. However, o tells us that A ceases to believe s, so it cannot be an expansion by q—this
also explains the belief in p→¬q in the initial state. The belief in r, ¬q and p in the final state are
quite intuitive; r has just been received, the observation requires ¬q to be believed and there is no
reason why A should suddenly reject p. s is believed again, as the apparent reason not to believe s,
namely q, is gone.

Algorithm 1 is computationally costly. Calculating C�(o) and N�(o) from a given observation o
and a core belief � requires at most a polynomial number of satisfiability tests. Calculating the rational
prefix from these sets of conditionals can also be done using a polynomial number of satisfiability tests.
However, the main source of complexity is the repeat loop which is needed to refine the core belief
until the weakest o-acceptable one is found. An exponential number of iterations may be required
for that. The following observation is an example where the algorithm goes through an exponential
number of different core beliefs. o=〈(p1,�,∅),...,(pn,�,∅),(pn+1,θ,∅)〉 where θ=∧1≤i≤n+1¬pi
and all pj, 1≤ j≤n+1, are distinct propositional variables. This indicates that the algorithm itself
may not be suitable for giving complexity results of the general problem. Both deciding if [ρ,�]
explains an observation o and whether � is o-acceptable are �P

2 -complete problems. As indicated
above we need at most a polynomial number of NP-oracle calls and the entailment problem of linear
base revision, which is �P

2 -complete [24], can be reduced to these decision problems. Deciding
whether a given observation o has an explanation is in�P

2 , deciding whether a given core belief � is
the weakest possible one (�≡�∨(o)) is inP

2 (hardness of these problems is an open question). The
proof of these complexity results involves guessing the right core belief and some further machinery
is needed to show that this is indeed possible. Full details can be found in [26].

6 More examples

In this section, we want to give a few more simple examples to illustrate the rational explanation.
For o=〈(p,q,∅)〉, the rational explanation is [(�,p→q),�]. So we infer A’s initial belief set is

p→q. Indeed to explain A’s belief in q following receipt of p it is clear A must initially believe
at least p→q since p itself does not entail q. It seems fair to say we are not justified in ascribing
to A any initial beliefs beyond this. After A receives p we assume A believes this input—we have
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no reason to expect otherwise—and so has belief set p∧q. If A is given a further input ¬(p∧q) we
predict A will also believe this input, but will hold on to its belief in p. The reason being we assume
A, having only just been told p, now has stronger reasons to believe p than q. If, instead, A is given
further input ¬p we predict its belief set will be just ¬p, i.e. we do not assume A’s belief in q persists.
Essentially the rational explanation assumes the prior input p must have been responsible for A’s
prior belief in q. And with this input now being ‘overruled’ by the succeeding input, A can no longer
draw any conclusions about the truth of q.

Another illustrative example is o=〈(p,¬p,∅)〉, for which the rational explanation is [(�),¬p].
Indeed ¬p must be a core belief, as that is the only possibility for p to be rejected. And if p was not
rejected, the agent could not consistently believe ¬p.

As mentioned before, some observations do not have an explanation. We gave one observation
that would have forced the violation of a basic property of the belief revision framework.
o= 〈(p,¬p,∅),(¬p,p,∅)〉 is another example but here the problem lies elsewhere. o says that upon
receiving p its negation is to be believed. Consequently, p must be blocked which is achieved by a
core belief entailing ¬p. But then ¬p must also be blocked as well, so the core belief must entail p
as well. Hence, the core would have to be inconsistent and we do not consider this an explanation.

7 Related work

Before concluding, we want to discuss the relation of our work to two other papers. In ‘Belief
reconstruction in cooperative dialogues’ [9], Herzig et al. deal with the question of determining
agents’ beliefs through a sequence of speech acts. The new beliefs should depend on the old ones
and the input received and old beliefs should persist if possible. The key point of the motivation is
that an input should not always be accepted. In particular, it should be be rejected if the speaker is
incompetent with respect to the content of the utterance.

Having a setting of a man–machine dialogue in mind, the authors present a multi-modal framework
as well as functions and axioms for modelling notions of subject, scope and competence. One such
axiom expresses that if an agent is competent on the topic of a formula ϕ, which does not contain
modal operators, and it also believes that formula to hold then ϕ does indeed hold. An axiom for
preservation expresses that if the scope of a speech act does not touch the topic of some formula
then that formula remains to be true after the speech act is carried out in case it was true before.
This additional machinery is used to put restrictions on models. Together with the laws governing
the revision process this allows to calculate the beliefs after a speech act has been performed.

The paper has a traditional first person perspective of the agent—what should it believe upon
receiving some new information and progressing the beliefs given the initial state. The assumed
revision framework is more sophisticated than the one we use. However, the paper does not deal with
reasoning about the other agent retrospectively, what prior beliefs it may have held. Competence
etc. are fixed and given for all parties involved. In analogy to the motivation of our work, it would
be interesting to actually infer information about the competence of an agent, static laws (beliefs
that cannot be changed by revision), former beliefs etc. given a dialogue and information about the
evolution of the beliefs of agents involved in it. Consequently, the title suggests a connection that
turns out to be superficial.

A paper that deals with completing information about beliefs over time is [8] in which Dupin de
Saint-Cyr and Lang present belief extrapolation operators. The starting point is a scenario 〈θ1,...,θN 〉
representing that θi holds at time point i. Such a scenario is a partial description of how the world
evolved. Assuming that fluents (literals) tend not to change, i.e. that the world is inertial, the operator
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tries to identify preferred trajectories of models 〈m1,...,mN 〉 such that mi |=θi. The authors present
several strategies for minimization change: counting all changes of fluents, counting changes per
fluent, penalties for changes, temporal considerations like changes occurring as late as possible, etc.
Each strategy gives rise to a preference relation among trajectories and, choosing one preference
relation, the result of the extrapolation is what is true at each point according to all preferred
trajectories explaining a scenario. A preference relation is called inertial if all static trajectories, i.e.
those where all models are identical and thus no change occurs, are equally preferred and preferred to
any non-static trajectory. The rationale behind choosing an inertial preference relation is that as long
as we can assume the world not to have changed, we should do so. The authors present properties
and connections between the different preference relations and the extrapolation operators they give
rise to and position extrapolation with respect to belief revision and update.

There are some essential differences between belief extrapolation and our approach. Once more,
the work in [8] is focused on a first person perspective and describes what an agent should believe at
each point in time rather than reasoning about what the agent does believe. The second very important
difference is that both approaches minimize very different things. For the sake of illustrating this, let
us for now forget that we assumed the world to be static and only the agent’s beliefs about it change.
Given the scenario 〈p,q,r〉, an extrapolation operator based on an inertial preference relation will
conclude that p∧q∧r held at every point in time. This is because the conjunction of all the sentences
is consistent and it can thus be assumed that nothing changed at all. We will now look at three potential
translations from a scenario 〈θ1,...,θN 〉 to observations in our setting: (i) 〈(θ1,�,∅),...,(θN ,�,∅)〉,
(ii) 〈(θ1,θ1,∅),...,(θN ,θN ,∅)〉 and (iii) 〈(�,θ1,∅),...,(�,θN ,∅)〉. The rational explanation for any
observation of the form (i) and (ii) will be [(),�]. This is because the material counterparts for
all positive conditionals will be tautologies. The belief trace for the example scenario will thus be
(�,p,p∧q,p∧q∧r). So with respect to these translations we do not conclude that p∧q∧r is believed
at every point in time. Our approach tries to minimize the beliefs we assign to the agent and not the
changes. As the agent may consider ¬p more plausible than p etc. we cannot conclude that it believed
p before being informed about it. In this sense belief extrapolation is credulous, using the inertia
assumption in order to come up with strong beliefs. The rational explanation is a sceptical approach.
Although the world considered may be static the agent’s information about it may be highly unreliable
and hence the agent’s beliefs may change often and dramatically.

For the given scenario the third translation yields the same conclusion as the belief extrapolation
operator. However, the inputs � in fact force us to conclude that the agent’s belief set did not change
at all and every belief must have been already present in the initial state. (iii) will fail whenever

∧
θi is

inconsistent, i.e. in all interesting cases. The resulting observation will not have an explanation at all.
A third essential difference between our work and [8] is that (in its original form) the extrapolation

operator does not incorporate information that a change occurred or why it may have occurred.
Given a scenario, a priori any fluent may have changed at any time and the operator tries to minimize
these changes according to the preference criterion. This is because the only information available
to the extrapolation operator is the scenario which only contains a partial description of the world at
every point but no information about what happened, or if anything happened at all. For our work,
we assume to be provided with richer information. The revision inputs ϕi can be considered to be a
possible cause for θi to be believed. This input, which has indeed been received, may have triggered
the change in mind. But conversely, nothing but the recorded inputs may have triggered a change.
The observation 〈(p,p∧¬q,∅),(p,p∧q,∅)〉 does not have an explanation. However, the scenario
〈p∧¬q,p∧q〉 does—in principle any fluent may change at any point in time.

The authors of [8] indicate how explicit information about change can be incorporated into their
approach. They suggest mixed scenarios where each sentence is labelled indicating whether it denotes
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an actual description of the state of the world or an expected change caused by an update. Then not
all possible trajectories are considered but only those which fit the expected changes recorded in the
mixed scenario. These trajectories are then compared with respect to the unexpected changes. This
still does not cause the two approaches to collapse into the same method. The rational explanation
of an observation is about finding an initial epistemic state that makes all changes expected ones.

Finally, there is a large body of work on explanations in a number fields, one being causal reasoning
(see e.g. [14]). It often looks for atomic events as explanations for some observed fact. However, in
our observations the events that have occurred are in fact given. We may try to find out if they were
the cause for A believing what is recorded (given the initial state and the recorded inputs up to that
point). In other words, would the agent have believed the same when receiving a tautology? But this
is not really at the core of our work. In analogy to [14], we try to identify (and construct) the causal
structure and the context which we then call an explanation for o.

8 Conclusion

To conclude, in this article we made an attempt at reconstructing an agent’s initial epistemic state
in order to explain a given observation of the agent. We did so by assuming a simple yet powerful
model for epistemic states allowing for iterated non-prioritized revision. The algorithm we provided
constructs a best (in terms of beliefs ascribed to the agent) explanation based on the rational closure
of conditional beliefs. The main contribution here is the calculation of a suitable set of conditionals
capturing the observation. Due to the nature of the belief revision framework this is non-trivial as
they heavily depend on the core belief. Note that in our work the explanation is not the event that
triggered an change—these events are in fact known. We are after the relation linking revision inputs
with beliefs, not for a single step but a sequence. That is, we gave a method for reasoning about
information of the form ‘Revision by ϕ1 leads to beliefs θ1 and non-beliefs D1 and an epistemic
state in which further revision by ϕ2 leads to ...’ Having calculated an initial epistemic state, the
questions posed in the introduction are answered by simply progressing the revision inputs starting
in that state, yielding conclusions about prior as well as future beliefs. This should be applicable to
problems requiring the modelling of agents’ beliefs, e.g. in the area of user modelling [27]. We want
to remark that conclusions based on the rational explanation have to be used with care and point
the reader to [26] for a detailed discussion. It would be of interest to see whether similar results can
be obtained when assuming A to employ other belief revision frameworks (e.g. [21]) and how they
relate to the results presented in this article. In analogy to [8], one could also investigate whether it
is possible to construct explanations that follow other minimization strategies.

Acknowledgements

Thanks are due to the anonymous reviewers for some helpful comments, and also to the organisers
and audience of the 2005 Dagstuhl seminar on “Belief Change in Rational Agents” for providing an
environment for some stimulating discussion on the paper’s topic.

References
[1] C. Alchourron, P. Gärdenfors, and D. Makinson. On the logic of theory change: Partial meet

contraction and revision functions. Journal of Symbolic Logic, 50, 510–530, 1985.
[2] R. Booth. On the logic of iterated non-prioritised revision. In Conditionals, Information and

Inference – Selected papers from the Workshop on Conditionals, Information and Inference,
2002, pp. 86–107. Springer’s LNAI 3301, 2005.



Reconstructing an Agent’s Epistemic State from Observations about its Beliefs and Non-beliefs 771

[3] R. Booth and T. Meyer. Admissible and restrained revision. Journal of Artificial Intelligence
Research , 26, 127–151, 2006.

[4] R. Booth and A. Nittka. Reconstructing an agent’s epistemic state from observations.
In Proceedings of IJCAI-05, pp. 394–399, Professional Book Center, Denver, CO, 2005.

[5] R. Booth and J. B. Paris. A note on the rational closure of knowledge bases with both positive
and negative knowledge. Journal of Logic, Language and Information, 7, 165–190, 1998.

[6] R. I. Brafman and M. Tennenholtz. Modeling agents as qualitative decision makers. Artificial
Intelligence, 94, 217–268, 1997.

[7] A. Darwiche and J. Pearl. On the logic of iterated belief revision. Artificial Intelligence, 89,
1–29, 1997.

[8] F. Dupin de Saint-Cyr and J. Lang. Belief extrapolation (or how to reason about observations
and unpredicted change). In Proceedings of KR’02, pp. 497–508, Morgan Kaufmann,
San Francisco, CA, 2002.

[9] L. Fariñas del Cerro, A. Herzig, D. Longin, and O. Rifi. Belief reconstruction in cooperative
dialogues. In Proceedings of AIMSA’98, pp. 254–266. Vol. 1480 of Lecture Notes in Computer
Science. Springer, Berlin/Heidelberg, 1998.

[10] M. Freund. On the revision of preferences and rational inference processes. Artificial
Intelligence, 152, 105–137, 2004.

[11] P. Gärdenfors. Knowledge in Flux. MIT Press, Cambridge, MA, 1988.
[12] H. Geffner and J. Pearl. Conditional entailment: Bridging two approaches to default entailment.

Artificial Intelligence, 53, 209–244, 1992.
[13] A. Grove. Two modelings for theory change. Journal of Philosophical Logic, 17, 157–170, 1988.
[14] J. Y. Halpern and J. Pearl. Causes and explanations: A structural-model approach – Part ii:

Explanations. In Proceedings of IJCAI’01, pp. 27–34, Morgan Kaufmann, San Francisco,
CA, 2001.

[15] S. O. Hansson, E. Fermé, J. Cantwell, and M. Falappa. Credibility-limited revision. Journal of
Symbolic Logic, 66, 1581–1596, 2001.

[16] S. Konieczny and R. Pino Pérez. A framework for iterated revision. Journal of Applied
Non-Classical Logics, 10, 339–367, 2000.

[17] J. Lang. A preference-based interpretation of other agents’ actions. In Proceedings of KR’04,
pp. 644–653, AAAI Press, Menlo Park, CA, 2004.

[18] D. Lehmann. Another perspective on default reasoning. Annals of Mathematics and Artificial
Intelligence, 15, 61–82, 1995.

[19] D. Lehmann. Belief revision, revised. In Proceedings of IJCAI’95, pp. 1534–1540, Morgan
Kaufmann, San Francisco, CA, 1995.

[20] D. Lehmann and M. Magidor. What does a conditional knowledge base entail? Artificial
Intelligence, 55, 1–60, 1992.

[21] D. Lehmann, M. Magidor, and K. Schlechta. Distance semantics for belief revision. Journal of
Symbolic Logic, 66, 295–317, 2001.

[22] D. Makinson. Screened revision. Theoria, 63, 14–23, 1997.
[23] A. Nayak, M. Pagnucco, and P. Peppas. Dynamic belief revision operators. Artificial

Intelligence,146, 193–228, 2003.
[24] B. Nebel. Base revision operations and schemes: Semantics, representation and complexity.

In Proceedings of ECAI’94, pp. 342–345, John Wiley and Sons, Chichester, 1994.
[25] A. Nittka. Reasoning about an agent based on its revision history with missing inputs. In

Proceedings of JELIA06, M. Fisher and W. van der Hoek, eds, LNAI. Springer-Verlag,
Berlin/Heidelberg, 2006.



772 Reconstructing an Agent’s Epistemic State from Observations about its Beliefs and Non-beliefs

[26] A. Nittka. A Method for Reasoning About Other Agents’Beliefs from Observations. PhD thesis,
Universität Leipzig, 2008.

[27] W. Pohl. Logic-based representation and reasoning for user modeling shell systems. User
Modeling and User-Adapted Interaction, 9, 217–283, 1999.

[28] H. Rott. Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic
Reasoning. Oxford University Press, Oxford, 2001.

Appendix: Proofs

A.1 Properties of f

When setting up our model of an agent’s epistemic state in Section 2, we assumed the agent’s belief set
may be calculated using the function f . We begin this appendix by giving some important properties
of this function which will be useful in our proofs. Throughout this section σ,ρ, etc. will denote
sequences of sentences and α,θ,ϕ,λ, etc. will denote sentences. First we have the following easy
properties.

Proposition A.1
(i) f (αm,...,α1)= f (αm,...,f (αi,...,α1)) for any 1≤ i≤m.
(ii) If αi ≡βi for i=1,2 then f (α2,α1)≡ f (β2,β1).
(iii) f (σ ·α)�α.
(iv) If f (σ ·α)≡⊥ then α≡⊥.
(v) f (α,β)≡ f (α∧β,β).
(vi) If β�α then f (α,β)=β.

The above properties are all easy to prove, and will be used freely in what follows. (i) says f is
right-associative, which follows immediately from its definition. (ii) is a syntax-irrelevance property.
In combination with (i) it entails that when applying f to a sequence we can freely replace any
sentence in that sequence by a logically equivalent one without changing the logical content of the
result. The next property is a little more involved.

Proposition A.2
If f(ρ1 ·ρ2) 	�¬θ then f(ρ1 ·θ ·ρ2)≡ f(ρ1 ·ρ2)∧θ .

Proof. We know f(ρ1 ·θ ·ρ2)= f(ρ1 ·f(θ,f(ρ2))) and f(ρ1 ·ρ2)= f(ρ1 ·f(ρ2)). Hence these two collect
the same sentences from ρ2. From f(ρ1 ·ρ2) 	�¬θ it follows that f(ρ2) 	�¬θ and hence f(θ,f(ρ2))=
θ∧f(ρ2).

So, if we can show that f(ρ1 ·θ∧f(ρ2)) and f(ρ1 ·f(ρ2)) also collect the same sentences from ρ1 the
proposition immediately follows. This is because the order of the elements in a conjunction does not
matter.

The argument that the same sentences from ρ1 are chosen is an inductive one. Assume both have
collected the same elements from some suffix of ρ1 their conjunction being denoted by χ so far. The
next sentence to be considered is ψ . Assume f(ρ1 ·f(ρ2)) rejects ψ , i.e. f(ρ2)∧χ �¬ψ . This implies
θ∧f(ρ2)∧χ �¬ψ and hence f(ρ1 ·θ∧f(ρ2)) also rejects ψ . However, if f(ρ1 ·f(ρ2)) accepts ψ , from
f(ρ1 ·ρ2) 	�¬θ we know f(ρ2)∧χ∧ψ 	�¬θ and hence θ∧f(ρ2)∧χ 	�¬ψ .And so, f(ρ1 ·θ∧f(ρ2)) also
accepts ψ . �

Proposition A.2 is a powerful property. If σ is any sequence such that f (σ ) 	�¬θ , then it means
that wherever θ is inserted in σ , f will return the same sentence modulo logical equivalence when
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applied to this expanded sequence, namely f (σ )∧θ . This fact will prove useful, for example, when
proving Proposition 4.1. In particular we get the following:

Proposition A.3
(vii) If f (σ ) 	�¬θ then f (σ ·θ )≡ f (σ )∧θ .
(viii) If f (σ ·ϕ) 	�¬θ then f (σ ·(ϕ∧θ ))≡ f (σ ·ϕ)∧θ .

Proof. (vii) follows immediately as a special case of Proposition A.2. For (viii) first note that from
(vii) we get if f (σ ·ϕ) 	�¬θ then f (σ ·ϕ ·θ )≡ f (σ ·ϕ)∧θ . But the left-hand side here is just f (σ ·f (ϕ,θ )),
and since f (σ ·ϕ)�ϕ we know ϕ 	�¬θ . Hence f (ϕ,θ )=ϕ∧θ so the left-hand side is f (σ ·(ϕ∧θ )),
giving the desired result. �

If we look at properties (ii)–(iv) and (vii) and (viii) above, we can recognize a close correspondence
between them and the list ofAGM postulates for belief revision. More precisely, from a fixed sequence
σ , if we set K =Cn(f (σ )) (where Cn is the operation of closure under logical entailment) and define
a revision operator ∗ for K by setting K ∗α=Cn(f (σ ·α)) for all α∈L, then ∗ forms an AGM revision
operator for K . Given the correspondence betweenAGM revision and the theory of rational inference
relations (see, e.g. [28]), we can also formulate this in another way: If we denote by ⇒σ the binary
relation over L defined by α⇒σ β iff f (σ ·α)�β, then ⇒σ forms a rational inference relation which
is consistency-preserving (i.e. α⇒σ ⊥ implies α≡⊥) [5, 10, 20]. This latter viewpoint will be
especially useful in proving the results from Section 3. This link between f and AGM revision
means we can in principle focus for the most part on a particular subset of the set of all sequences.
If α1 �α2 ···�αm then we shall say the sequence (αm,...,α1) is a logical chain.

Proposition A.4
For any sequence σ there exists a logical chain ρ= (αm,...,α1) such that αm ≡� and, for all λ∈L,
f (σ ·λ)≡ f (ρ ·λ).

Proof. From established results in AGM theory, we know any revision operator satisfying the AGM
postulates can be represented by a logical chain. To be precise, for any belief set K and AGM
revision operator ∗ for K , we know there always exists a logical chain (αm,...,α1), with Cn(α1)=K
and αm ≡�, such that for all θ ∈L,

K ∗θ=
{

Cn(θ∧αr(θ )) if θ 	≡⊥
Cn(⊥) otherwise.

where r(θ )
def= min{i |θ∧αi is consistent}. The αi basically correspond to the spheres in Grove’s

famous ‘systems-of-spheres’ representation of AGM revision [13]. Given all this, and given the
correspondence between f and AGM revision described above, we know that for our given sequence
σ , there must exist a logical chain (αm,...,α1 such that α1 ≡ f(σ ) and αm ≡�, and such that
for all λ,

f(σ ·λ)≡
{
λ∧αr(λ) if λ 	≡⊥
⊥ otherwise.

Let ρ= (αm,...,α1) be the logical chain. Then it can be checked that, for all λ∈L, f(ρ ·λ)≡ f(σ ·λ)
as required. �

Given our definition of Bel([ρ,�]) in terms of f an immediate corollary of this result is that for
any epistemic state [σ,�], there is a logical chain ρ with weakest element � such that, for all λ∈L,
Bel([σ,�]∗λ)≡Bel([ρ,�]∗λ).

The next property will be used in the proofs of Propositions 4.1 and 4.3.
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Lemma A.5
(i) If f(ρ)�ϕ then f(ϕ→θ ·ρ)≡ f(θ ·ρ)
(ii) If f(ρ)�¬ϕ then f(ϕ→θ ·ρ)≡ f(ρ)

Proof. (i). We have f(ϕ→θ ·ρ)≡ f(ϕ→θ ·f (ρ))≡ f(f (ρ)∧(ϕ→θ )·f (ρ)). If f(ρ)�ϕ then f (ρ)∧
(ϕ→θ )≡ f (ρ)∧θ so f(f (ρ)∧(ϕ→θ )·f (ρ))≡ f(f (ρ)∧θ ·f (ρ))≡ f(θ ·f (ρ))≡ f(θ ·ρ) as required.
(ii). If f(ρ)�¬ϕ then f(ϕ→θ ·f (ρ))= f (ρ) by Proposition A.1 (vi). �

Finally we have the following property, which will be relied upon when proving Theorems 3.6
and 3.7.

Lemma A.6
Either f(σ ·ρ ·�)�¬f(σ ·�) or f(σ ·ρ ·�)� f(σ ·�)

Proof. f(σ ·ρ ·�)≡ f(σ ·� ·ρ ·�)= f(σ ·� ·f(ρ ·�)). The first equivalence is due to Proposition A.2.
� will be entailed, so adding it somewhere in the sequence will have no impact. Now, either f(σ ·
�)∧f(ρ ·�) is consistent or it is not. In the first case by Proposition A.3 (vii) we get f(σ ·� ·f(ρ ·�))≡
f(σ ·�)∧f(ρ ·�)� f(σ ·�), while in the second case we get f(σ ·� ·f(ρ ·�))� f(ρ ·�)�¬f(σ ·�). �

A.2 Proofs from Section 3

Recall (from just before Definition 3.2) that, given we have constructed the sequence ρR(C,N )=
(αm,...,α0) corresponding to the rational closure of C and N according to Definition 3.1, the rational
closure itself is the binary relation ⇒R given by

λ⇒Rχ iff αm �¬λ or f(αm,...,α0,λ)�χ.

The proof of our next proposition will make use of the following property of ⇒R:

Lemma A.7 ([5, 20])
If θ⇒R ⊥ then θ⇒⊥ for every rational inference relation ⇒ satisfying C and N .

Proposition 3.4
Let o∈O and �∈L, and let ρR(o,�)= (αm,...,α0) be the rational prefix of o with respect to �. Then
(i) if � 	≡⊥ and αm ≡� then [ρR(o,�),�] is an explanation for o.
(ii) if �≡⊥ or αm 	≡� then � is not an o-acceptable core.

Proof. Suppose o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉. For each i=1,...,n we will let ιi denote the
sequence of first i inputs (φ1,...,φi).
(i) Suppose � 	≡⊥ and αm ≡�. By the definition of explanation we need to show two things: (a)
� 	≡⊥, and (b) for all i=1,...,n, f(ρR(o,�)·f(ιi ·�))�θi and f(ρR(o,�)·f(ιi ·�)) 	�δ for all δ∈Di.
Condition (a) we are already given, so it remains to prove (b). Since the rational closure relation
⇒R satisfies all the positive conditionals (C) and none of the negative ones (N ) we know, for each
i, f (ιi ·�)⇒R θi and f (ιi ·�) 	⇒R δ for all δ∈Di. Now, for any sentence χ we have f (ιi ·�)⇒Rχ iff
either αm �¬f (ιi ·�) or f (ρR(o,�)·f (ιi ·�))�χ . But since αm ≡� and � 	≡⊥, the first disjunct here
cannot hold. Hence f (ιi ·�)⇒Rχ iff f (ρR(o,�)·f (ιi ·�))�χ . In particular, f(ρR(o,�)·f(ιi ·�))�θi
and f(ρR(o,�)·f(ιi ·�)) 	�δ for all δ∈Di as required.
(ii) First, if �≡⊥ then � cannot be o-acceptable by definition of explanation. So assume instead
αm 	≡�. If � was o-acceptable then there would be some ρ such that [ρ,�] explained o. Let ⇒ρ be the
consistency-preserving rational inference relation corresponding to ρ (see the paragraph just before
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Proposition A.4). Since [ρ,�] explains o, ⇒ρ satisfies all the positive conditionals (C) and none
of the negative ones (N ). Since αm 	≡�, i.e. ¬αm is consistent, and ⇒ρ is consistency-preserving
we have ¬αm 	⇒ρ⊥. Hence, by Lemma A.7, ¬αm 	⇒R ⊥ – contradiction. Hence also in this case �
cannot be o-acceptable. �
Theorem 3.6
ρR(o,�)�1 σ for all σ ∈�.

Proof. By Proposition A.4 we can restrict our attention to logical chains. To ease notation, let us
denote ρR(o,�) in this proof by just ρR = (αm,...,α0), σ = (βl,...,β0) such that [σ,�] explains o.
Both sequences are logical chains and αm ≡�≡βl. Again, we abbreviate (ϕ1,...,ϕi) by ιi.

Also, let us introduce the following notation: Given any λ∈L, rankρR (λ)
def= min{k |λ∧

αk is consistent} (
def= ∞ if no such k exists. Though note that since αm ≡� this can happen only

if λ≡⊥). Analogously, rankσ (λ)
def= min{k |λ∧βk is consistent} (

def= ∞ if no such k exists). Recall
that as ρR is a logical chain we have for any λ such that λ 	≡⊥, f(ρR ·λ)≡λ∧αs where s=rankρR (λ)
(and analogously for σ ).

To show ρR �1 σ we must prove that for any i∈{0,...,n}, if BelρR
j ≡Belσj for all j< i then

Belσi �BelρR
i . So fix i∈{0,...,n} and assume BelρR

j ≡Belσj for all j< i. We have BelρR
i = f(ρR ·ιi ·�)=

f(ρR ·f(ιi ·�)).As � — and consequently f(ιi ·�) — is consistent, we have f(ρR ·f(ιi ·�))≡ f(ιi ·�)∧αs,
where s=rankρR (f(ιi ·�)). What does αs look like? Well, by construction of ρR, we know

αs ≡
∧
k∈I

(
f(ιk ·�)→θk

)∧∧
k∈J

(¬f(ιk ·�)
)
,

where I ={k |1≤k ≤n and rankρR (f(ιk ·�))≥s} and J ={k ∈ I | ∧
i′∈I

(
f(ιi′ ·�)→θi′

)∧ ∧
k′≺ek

(¬f(ιk′ ·�)
)

∧f(ιk ·�)�ψ for some negative conditional f(ιk ·�)⇒ψ}. ≺e is a total order on the indices in J ,
indicating in which order the corresponding negative conditionals become exceptional in the least
fixpoint calculation of the rational prefix construction.

Thus we have obtained

BelρR
i ≡ f(ιi ·�)∧

∧
k∈I

(
f(ιk ·�)→θk

)∧∧
k∈J

(¬f(ιk ·�)
)

Hence to show Belσi �BelρR
i we need:

(a) Belσi � f(ιi ·�).
(b) Belσi �(f(ιk ·�)→θk

)
for all k ∈ I , equivalently

Belσi ∧f (ιk ·�)�θk , for all k ∈ I
(c) Belσi �¬f(ιk ·�), for all k ∈J .

We show each of these in turn.
(a). Belσi = f(σ ·ιi ·�)= f(σ ·f(ιi ·�))� f(ιi ·�).
(b). Let k ∈ I . Belσi ∧f(ιk ·�)≡βt ∧f(ιi ·�)∧f(ιk ·�), t =rankσ (f(ιi ·�)). If this is inconsistent, we
trivially get the desired conclusion. So suppose Belσi ∧f(ιk ·�) is consistent, which implies f(ιi ·�)∧
f(ιk ·�) is consistent. We have to consider two cases i≤k and i>k.
Case i≤k: LemmaA.6 tells us f(ιk ·�)� f(ιi ·�). Hence βt ∧f(ιi ·�)∧f(ιk ·�)≡βt ∧f(ιk ·�). We claim
that rankσ (f(ιk ·�))= t which implies βt ∧f(ιk ·�)≡Belσk �θk—yielding the desired result.
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To prove our claim assume rankσ (f(ιk ·�))=u< t. Then βu ∧f(ιk ·�) 	�⊥, as f(ιk ·�)� f(ιi ·�) we
know βu ∧f(ιi ·�) 	�⊥ contradicting that f(ιi ·�) is inconsistent with all βu where u< t (definition of
rank). u> t is not possible as βt ∧f(ιk ·�) is consistent and rank yields the smallest possible index.
This proves our claim.
Case i>k: Lemma A.6 tells us f(ιi ·�)� f(ιk ·�). By Proposition A.3 Belσi ∧f(ιk ·�)= f(σ ·f(ιi ·�))∧
f(ιk ·�) is equivalent to f(σ ·(f(ιi ·�)∧f(ιk ·�))). If we could show f(σ ·f(ιk ·�))∧f(ιi ·�) is consistent
then Proposition A.2 would yield

Belσi ∧f(ιk ·�) ≡ f(σ ·(f(ιi ·�)∧f(ιk ·�)))

≡ f(σ ·f(ιk ·�))∧f(ιi ·�)by Proposition A.3

� f(σ ·f(ιk ·�))=Belσk ,

and so, since Belσk �θk as [σ,�] explains o, we would get the required Belσi ∧f(ιk ·�)�θk . To show
f(σ ·f(ιk ·�))∧f(ιi ·�) is indeed consistent, first note that, by the assumption BelρR

k ≡Belσk for all k< i,
we have

f(σ ·f(ιk ·�)) ≡ f(ρR ·f(ιk ·�))

≡ f(ιk ·�)∧αx

where x=rankρR (f(ιk ·�)). Hence

f(σ ·f(ιk ·�))∧f(ιi ·�) ≡ f(ιk ·�)∧αx ∧f(ιi ·�)

≡ αx ∧f(ιi ·�).

Now since k ∈ I we know x≥s, hence αs �αx . We know already αs ∧f(ιi ·�) is consistent. Thus it
follows that αx ∧f(ιi ·�) is consistent and so f(σ ·f(ιk ·�))∧f(ιi ·�) is consistent as required.
(c). We know by construction of the rational prefix that we can order the elements of J using a total
order ≺e. For a k ∈J there is a negative conditional f(ιk ·�)⇒ψ such that

∧
j∈I

(
f(ιj ·�)→θk

)∧(
∧

k′≺ek

¬f(ιk′ ·�))∧f(ιk ·�)�ψ.

We will prove Belσi �¬f(ιk ·�) iteratively ordering the k according to ≺e. So assume Belσi �
¬f(ιk ·�) for all k′ ≺e k.

Hence Belσi �∧
j∈I

(
f(ιj ·�)→θk

)∧ ∧
k′≺ek

(¬f(ιk ·�)
)
. Now assume Belσi 	�¬f(ιk ·�) and so f(ιi ·�)∧

f(ιk ·�) is consistent.
Recall, BelρR

i = f(ιi ·�)∧αs. As BelρR
i is consistent we know BelρR

i 	�¬f(ιi ·�). This implies i 	∈J
(cf. the structure of αs — if i∈J then αs �¬f(ιi ·�)). Hence, we only need to consider the cases i>k
and i<k.
Case i>k: rankρR (f(ιk ·�))=u>s as k ∈J (since αs �¬f(ιk ·�) for k ∈J). Lemma A.6 again tells us
f(ιi ·�)� f(ιk ·�) implying rankρR (f(ιk ·�))=u≤s. This is because rankρR (f(ιi ·�))=s and hence αs
must be consistent with f(ιk ·�). So this case is impossible, as well.
Case i<k: Lemma A.6 tells us f(ιk ·�)� f(ιi ·�). Belσi =βt ∧f(ιi ·�) with t =rankσ (f(ιi ·�)).

We claim Belσk =βt ∧f(ιk ·�). Note for all u< t,βu ∧f(ιi ·�) is inconsistent, hence for all u< t,
βu ∧f(ιk ·�) is inconsistent (f(ιk ·�)� f(ιi ·�)). Further Belσi ∧f(ιk ·�) 	�⊥, implying that βt ∧f(ιi ·�)
∧f(ιk ·�) 	�⊥, hence βt ∧f(ιk ·�) 	�⊥. Consequently rankσ (f(ιk ·�))= t, proving the claim.
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So Belσk =βt ∧f(ιk ·�). This implies Belσk �Belσi (f(ιk ·�)� f(ιi ·�) and Belσi =βt ∧f(ιi ·�)).
So we know Belσk �∧

j∈I

(
f(ιj ·�)→θk

)∧ ∧
k′≺ek

(¬f(ιk ·�)
)

and also Belσk � f(ιk ·�). From the

definition of J , we know that there exists a negative conditional f(ιk ·�)⇒ψ such that∧
j∈I

(
f(ιj ·�)→θk

)∧ ∧
k′≺ek

(¬f(ιk ·�)
)∧f(ιk ·�)�ψ.

So Belσk �ψ . Hence σ cannot be a solution — contradiction — and consequently Belσi �¬f(ιk ·�).
�

Theorem 3.7
For all σ ∈�, if σ �1ρR(o,�) then ρR(o,�)�2 σ .

Proof. This is proved along exactly similar lines to the last part of Theorem 3.6. Again it suffices to
restrict the argument to logical chains. We again useρR = (αm,...,α0) to denoteρR(o,�). Let [σ,�] be
an explanation for o and suppose σ �1ρR. We already know by Theorem 3.6 that also ρR �1 σ . Taking
these two inequalities together means we must have Belσi ≡BelρR

i for all i=0,...,n. Now to show
ρR �2 σ choose any λ∈L. We must show Bel([σ,�]∗ϕ1 ∗···∗ϕn ∗λ)�Bel([ρR,�]∗ϕ1 ∗···∗ϕn ∗λ),
i.e. f(σ ·ι·λ·�)� f(ρR ·ι·λ·�)

We know f(ρR ·ι·λ·�)= f(ρR ·f(ι·λ·�))=αs ∧f(ι·λ·�), where s=rankρR (f(ι·λ·�)) and

αs ≡
∧
k∈I

(
f(ιk ·�)→θk

)∧∧
k∈J

(¬f(ιk ·�)
)
,

where I ={k |1≤k ≤n and rankρR (f(ιk ·�))≥s} and J ={k ∈ I |∧
k∈I

(
f(ιk ·�)→θk

)∧ ∧
k′≺ek

(¬f(ιk′ ·�)
)

∧f(ιk ·�)�ψ for some negative conditional f(ιk ·�)⇒ψ}. So, again we have to prove

(a) f(σ ·ι·λ·�)� f(ι·λ·�)

(b) f(σ ·ι·λ·�)�(f(ιk ·�)→θk
)

for all k ∈ I , equivalently
f(σ ·ι·λ·�)∧f (ιk ·�)�θk , for all k ∈ I

(c) f(σ ·ι·λ·�)�¬f(ιk ·�), for all k ∈J .

(a) and (b) are exactly as in the proof for Theorem 3.6. Note that for (b) only the case analogous to
i>k is possible. In order to show (c) take an arbitrary k ∈J . If f(σ ·ι·λ·�)�¬f(ιk ·�) we are done.
So assume f(σ ·ι·λ·�) 	�¬f(ιk ·�). Hence f(ι·λ·�) is consistent with f(ιk ·�). Lemma A.6 now tells
us that f(ι·λ·�)� f(ιk ·�). Consequently f(ρR ·ι·λ·�)� f(ιk ·�), but we already know f(ρR ·ι·λ·�)�
¬f(ιk ·�) as k ∈J . So we get a contradiction as f(ρR ·ι·λ·�) must be is consistent (� is). So it is
impossible that f(σ ·ι·λ·�) 	�¬f(ιk ·�). This concludes the proof. �

A.3 Proofs from Section 4

Proposition 4.1
If �1 and �2 are o-acceptable then so is �1 ∨�2.

Proof. Assume o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 and let �1 and �2 be two o-acceptable cores.
Then there are ρ1 = (β11,...,β1m1 ) and ρ2 = (β21,...,β2m2 ) such that [ρ1,�1] and [ρ2,�2] explain o.
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It suffices to show there is a ρ such that [ρ,�1 ∨�2] explains o. We will show that

ρ= (¬�1 →β21,...,¬�1 →β2m2 ,�1 →β11,...,�1 →β1m1 ,�1)

is such a sequence. In fact, we will show that Bel([ρ,�1 ∨�2]∗ϕ1 ∗ ...∗ϕi)=Bel([ρ1,�1]∗ϕ1 ∗ ...∗
ϕi) or Bel([ρ,�1 ∨�2]∗ϕ1 ∗ ...∗ϕi)=Bel([ρ2,�2]∗ϕ1 ∗ ...∗ϕi) for all 1≤ i≤n. Then the proposition
immediately follows as [ρ1,�1] and [ρ2,�2] are explanations for o. Fixing an i we show f(ρ ·
(ϕ1,...,ϕi,�1 ∨�2))≡ f(ρ1 ·(ϕ1,...,ϕi,�1)) or f(ρ ·(ϕ1,...,ϕi,�1 ∨�2))≡ f(ρ2 ·(ϕ1,...,ϕi,�2)).

We claim that f(�1,ϕ1,...,ϕi,�1 ∨�2)≡ f(ϕ1,...,ϕi,�1) or f(�1,ϕ1,...,ϕi,�1 ∨�2)�¬�1 and
f(�1,ϕ1,...,ϕi,�1 ∨�2)≡ f(ϕ1,...,ϕi,�2). The �1 in the very front is the last element of ρ. So before
considering the implications in ρ which are constructed from the sentences in ρ1 and ρ2 we have
collected a sentence which is equivalent to one that has been collected in the original cases.

Lemma A.5 then tells us how to treat the implications in ρ with respect to the original sentences
in ρ1 and ρ2. In the first case where �1 is entailed all �1 →β1j are treated exactly like the β1j from
ρ1 and the ¬�1 →β2k from ρ2 can be ignored. As a consequence, we get the same beliefs as for
the epistemic state [ρ1,�1]. In the second case, ¬�1 is entailed and hence all �1 →β1j from ρ1 can
be ignored and all ¬�1 →β2k are treated exactly like the β2k from ρ2 and hence we get the same
beliefs as for the epistemic state [ρ2,�2]

For proving the claim, let us first assume f(�1,ϕ1,...,ϕi,�1 ∨�2)��1 then we must have
f(ϕ1,...,ϕi,�1 ∨�2) 	�¬�1. By Proposition A.2 f(�1,ϕ1,...,ϕi,�1 ∨�2)≡ f(ϕ1,...,ϕi,�1,�1 ∨�2)
which is equivalent to f(ϕ1,...,ϕi,f(�1,�1 ∨�2)) and as �1 ��1 ∨�2 and �1 is consistent we have
f(�1,�1 ∨�2)≡�1 and so this is equivalent to f(ϕ1,...,ϕi,�1) as claimed.

Now assume f(�1,ϕ1,...,ϕi,�1 ∨�2) 	��1. Consequently f(�1,ϕ1,...,ϕi,�1 ∨�2)�¬�1 and
f(�1,ϕ1,...,ϕi,�1 ∨�2)≡ f(ϕ1,...,ϕi,�1 ∨�2). If we can show f(ϕ1,...,ϕi,�1 ∨�2) and
f(ϕ1,...,ϕi,�2) collect the same elements from (ϕ1,...,ϕi) we are done (let χ denote the conjunction
of elements collected from that sequence, then f(ϕ1,...,ϕi,�2)=χ∧�2 and f(ϕ1,...,ϕi,�1 ∨�2)=
χ∧(�1 ∨�2) but as this entails ¬�1 it is equivalent to χ∧�2).

To see that the two indeed collect the same elements from (ϕ1,...,ϕi) assume they have collected
the same elements ϕi down to ϕj+1 their conjunction being denoted by χ . Now they are considering
ϕj. If f(ϕ1,...,ϕi,�2) accepts ϕj, i.e. χ∧�2 ∧ϕj is consistent then χ∧(�1 ∨�2)∧ϕj is consistent
and hence f(ϕ1,...,ϕi,�1 ∨�2) accepts ϕj as well. If f(ϕ1,...,ϕi,�2) rejects ϕj then χ∧�2 �¬ϕj so
χ∧ϕj �¬�2 and as a consequence χ∧ϕj ∧(�1 ∨�2)��1. Hence, f(ϕ1,...,ϕi,�1 ∨�2) must reject
ϕj as well, since f(ϕ1,...,ϕi,�1 ∨�2)�¬�1. �
Proposition 4.2
Suppose o�right o′ or o�left o′. Then every o′-acceptable core is an o-acceptable core.

Proof. Suppose o�right o′. Then it is easy to check that any explanation [ρ,�] for o′ is an
explanation for o. Hence any o′-acceptable core is automatically o-acceptable. Suppose o�left o′,
say o′ =〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 and o=〈(ϕj,θj,Dj),...,(ϕn,θn,Dn)〉 for some 1≤ j≤n, and let
� be an o′-acceptable core. Then [ρ,�] explains o′ for some ρ. In this case it is easy to check
[ρ ·(ϕ1,...,ϕj−1),�] then provide an explanation for o. So � is also o-acceptable. �
Proposition 4.3
Let � :O→L be any function which returns a sentence given any o∈O. Then the following are
equivalent:
(i) � satisfies Acceptability, Consistency and Right Monotony.
(ii) � satisfies Acceptability, Consistency and Left Monotony.
(iii) �(o)≡�∨(o) for all o∈O.
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Proof. Propositions 4.1 and 4.2 yield (iii) → (i) and (iii) → (ii). It remains to show (i) → (iii) and
(ii) → (iii).
(i)→ (iii):
Let � satisfy Acceptability, Consistency and Right Monotony. First, for any o∈O we know already
�(o)��∨(o). If �(o)≡⊥ then this is clear, while if �(o) 	≡⊥ then there must exist at least one
o-acceptable core by Consistency, and so �(o) is itself o-acceptable by Acceptability. Hence in
this case �(o)��∨(o) by definition of �∨. Now, to show (iii) assume for contradiction there
is some o∈O such that �(o)=ψ and �∨(o)=φ 	≡ψ . We just proved ψ �φ, so we must have
φ 	�ψ .

Now consider o′ =o·(¬ψ,¬ψ,∅). Since φ 	�ψ we know φ 	≡⊥ so φ is o-acceptable since we
know �∨ satisfies Acceptability and Consistency. Hence there is some ρ such that [ρ,φ] explains
o. It can be checked that also [ρ,φ] explains o′ (since φ 	�ψ , core φ does not prevent ¬ψ from
being introduced into the belief set upon receiving it, which is the only condition needed to satisfy
the additional observation (¬ψ,¬ψ,∅)). Hence, there is an o′-acceptable core, and so �(o′) is an
o′-acceptable core by Acceptability. In particular (assuming the full sequence of revision inputs in o
is (ϕ1,...,ϕn)), this means f (ρ′ ·(ϕ1,...,ϕn)·¬ψ ·�(o′))�¬ψ for some prefix ρ′. But since o�right o′
we know �(o′)�ψ by Right Monotony. Hence also

f (ρ′ ·(ϕ1,...,ϕn)·¬ψ ·�(o′))��(o′)�ψ.
so f (ρ′ ·(ϕ1,...,ϕn)·¬ψ ·�(o′))≡⊥. But this can only happen if �(o′)≡⊥, which contradicts �(o′)
being o′-acceptable. Hence there can be no o such that �(o) 	≡�∨(o) as required.
(ii) → (iii):
Now let � satisfy Acceptability, Consistency and Left Monotony. To show (iii), again assume for
contradiction there is some o∈O such that �(o)=ψ and �∨(o)=φ 	≡ψ . As above this means we
have ψ �φ and φ 	�ψ , but we further have φ 	�¬ψ (otherwise ψ �¬ψ , but ψ is consistent).

Consider o′ =〈(¬ψ,¬ψ,∅),(ψ,ψ,∅)〉·o. Since o�left o′ we know �(o′)�ψ by Left Monotony.
But this means �(o′) cannot be o′-acceptable, since if it were it would be 〈(¬ψ,¬ψ,∅)〉-acceptable by
Proposition 4.2 (since 〈(¬ψ,¬ψ,∅)〉�right o′), but this is not possible. Since � satisfiesAcceptability,
this in turn implies no o′-acceptable core can exist. But we will now show that in fact φ is an
o′-acceptable core, giving the required contradiction.

As this proof is constructive, we need to look into the observation we assumed to exist—
o=〈(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉 and thus o′ =〈(¬ψ,¬ψ,∅),(ψ,ψ,∅),(ϕ1,θ1,D1),...,(ϕn,θn,Dn)〉.
Note that both φ and ψ are o-acceptable. For φ this follows since we assume φ 	�ψ and so φ is
consistent, which means φ must be o-acceptable from the fact that �∨ satisfies Acceptability and
Consistency. The o-acceptability of ψ follows in turn using the assumption � satisfies Acceptability.
Hence there exist sequences ρ1 = (β11,...,β1m1 ) and ρ2 = (β21,...,β2m2 ) such that [ρ1,φ] and [ρ2,ψ]
explain o. We will show that there is a sequence ρ such that [ρ,φ] explains o′, namely

ρ= (ψ→β21,...,ψ→β2m2 ,¬ψ→β11,...,¬ψ→β1m1 ).

Note that φ explains the prefix 〈(¬ψ,¬ψ,∅),(ψ,ψ,∅)〉 of o′ using any sequence. This is because
that observation only requires ¬ψ and ψ to be believed upon receiving them, but this is guaranteed
as φ is consistent with both. (φ 	�ψ by assumption, while if φ�¬ψ then ψ is inconsistent since
we established at the start that ψ �φ, but this contradicts ψ being o-acceptable.) We will show that
for all the remaining inputs ϕ1,...,ϕn, Bel([ρ,φ]∗¬ψ ∗ψ ∗ϕ1 ∗ ...∗ϕi)≡Bel([ρ1,φ]∗ϕ1 ∗ ...∗ϕi)
or Bel([ρ,φ]∗¬ψ ∗ψ ∗ϕ1 ∗ ...∗ϕi)≡Bel([ρ2,ψ]∗ϕ1 ∗ ...∗ϕi) which then yields that [ρ,φ] indeed
explains o′. The argument is basically identical to that in the proof for Proposition 4.1.
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f(¬ψ,ψ,ϕ1,...,ϕi,φ)�ψ or f(¬ψ,ψ,ϕ1,...,ϕi,φ)�¬ψ . This is because ψ is an element of the
sequence and hence is collected yielding the first case or rejected yielding the second. For the first case
Proposition A.2 tells us f(¬ψ,ψ,ϕ1,...,ϕi,φ)≡ f(¬ψ,ϕ1,...,ϕi,ψ,φ). But as ψ �φ, which implies
f(ψ,φ)≡ψ , and f(¬ψ,ϕ1,...,ϕi,ψ,φ)≡ f(¬ψ,ϕ1,...,ϕi,f(ψ,φ)) we get f(¬ψ,ψ,ϕ1,...,ϕi,φ)≡
f(¬ψ,ϕ1,...,ϕi,ψ). This definitely entails ψ , so the ¬ψ in the beginning is irrelevant. Hence in
this case f(¬ψ,ψ,ϕ1,...,ϕi,φ)≡ f(ϕ1,...,ϕi,ψ).

In other words, before ρ is processed a sentence has been constructed that is equivalent to that
which has been collected before processing ρ2. Lemma A.5 yields that the ¬ψ→β1j can now be
ignored when processing ρ and that the ψ→β2k are treated exactly like the β2k in ρ2. Hence, in this
case Bel([ρ,φ]∗¬ψ ∗ψ ∗ϕ1 ∗ ...∗ϕi)≡Bel([ρ2,ψ]∗ϕ1 ∗ ...∗ϕi) as claimed.

In the second case (f(¬ψ,ψ,ϕ1,...,ϕi,φ)�¬ψ), we know f(ϕ1,...,ϕi,φ)�¬ψ as otherwise the
next sentence ψ would have to be accepted. But this means f(¬ψ,ψ,ϕ1,...,ϕi,φ)≡ f(ϕ1,...,ϕi,φ),
i.e. before ρ is processed a sentence has been constructed that is equivalent to that which has been
collected before processing ρ1. Lemma A.5 now yields that the ψ→β2j can now be ignored when
processing ρ and that the ¬ψ→β1k are treated exactly like the β1k in ρ1 and hence, Bel([ρ,φ]∗
¬ψ ∗ψ ∗ϕ1 ∗ ...∗ϕi)≡Bel([ρ1,φ]∗ϕ1 ∗ ...∗ϕi). �

A.4 Proofs from Section 5

Lemma 5.1
Let � and αm be as after the calculation of ρR(o,�). If αm 	≡� then � 	≡�∧αm.

Proof. From Example 3.3 (i) we know if αm 	≡� then we must have � 	≡⊥. We have αm ≡∧Um
with Um = C̃m ∪{¬λ |λ⇒χ ∈Nm} and all the conditionals in Cm and Nm are exceptional for Um
otherwise the rational prefix construction would not have terminated. This means Um �¬λ for any
conditional λ⇒χ ∈Cm ∪Nm. Such a conditional must exist as otherwise Um =∅ and αm =�. Recall
that λ= f(ϕ1,...,ϕi,�) for some i, so λ��. Now assume �≡�∧αm, i.e. ��αm. Then λ�¬λ and
hence λ is inconsistent, but this is possible only if �≡⊥—contradiction. Hence, � 	≡�∧αm. �
Lemma 5.2
Let 0< i≤k and suppose ρi−1 = (αm,...,α0). Then, for any o-acceptable core �′, if �′ ��i−1 then
�′ �αm.

Proof. We will show that if �′ 	�αm then the rational prefix construction using that core will not be
successful, i.e.

∧
U ′

m′ 	≡� and hence by Proposition 3.4 (ii) �′ is not o-acceptable — contradiction.
We will abbreviate �i−1 by �. The proposition is trivial for o-acceptable �, as then αm ≡�. Further
� 	≡⊥ as that would contradict �′ �� and �′ being o-acceptable.

So let � be consistent and not o-acceptable. Then αm =∧Um 	≡� which implies Cm 	=∅ and
possibly Nm 	=∅. Let IC ={i | f(ιi ·�)⇒θi ∈Cm} and IN ={i | f(ιi ·�)⇒δ∈Nm} be the index set of
the ultimately exceptional positive and negative conditionals and let ≺e be the order on IN in which
the corresponding conditional became exceptional in the least fixpoint construction of Um. So we
know from the conditionals being exceptional for Um that Um ≡ ∧

i∈IC
(f(ιi ·�)→θi) ∧ ∧

j∈IN
¬f(ιj ·�)�∧

i∈IC
¬f(ιi ·�) and ∀j∈ IN ∃δ∈Dj : ∧

i∈IC
(f(ιi ·�)→θi) ∧ ∧

k∈IN ∧k≺ej
¬f(ιk ·�)∧f(ιj ·�)�δ. We will use

these entailments later in the proof and will refer back to them with (*).
First note αm ≡ ∧

i∈IC
¬f(ιi ·�). This is because Nm ⊆Cm; if a negative conditional f(ιi ·�)⇒δ with

index i is n-exceptional for Um then the corresponding positive conditional (f(ιi ·�)⇒θi) must be
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p-exceptional as ¬f(ιi ·�) is added to Um. We will now show that if �′ 	� ∧
i∈IC

¬f(ιi ·�)≡αm (implying

�′ to be consistent) then C′
m′ 	=∅ and hence

∧
U ′

m′ 	≡� as claimed.
So let �′ ��, �′ 	� ∧

i∈IC
¬f(ιi ·�) and J ={j | j∈ IC ∧�′ 	�¬f(ιj ·�)}, i.e. J is the set of indexes of

ultimately exceptional conditionals whose antecedents remain consistent with the new core belief
�′. We claim that ∧

i∈J

(f(ιi ·�′)→θi) ∧
∧

j∈J∩IN

¬f(ιj ·�′)�
∧
i∈J

¬f(ιi ·�′)

and

∀j∈J ∩IN ∃δ∈Dj :
∧
i∈J

(f(ιi ·�′)→θi) ∧
∧

k∈J∩IN ∧k≺ej

¬f(ιk ·�′)∧f(ιj ·�′)�δ

This means a conditional with an index j∈J will be ultimately exceptional when using �′ as the core
belief yielding C′

m′ 	=∅. We know �′ ��, so �′∧�≡�′ and for j∈J we have f(ιj ·�′) 	�¬�′, so using
Proposition A.3 we get f(ιj ·�′)≡ f(ιj ·�′∧�)≡ f(ιj ·�)∧�′. The corresponding equivalence does not
hold for f(ιj ·�′), j 	∈J . Here we have f(ιj ·�)∧�′ �⊥ so that

∧
j 	∈J

(f(ιj ·�)∧�′ →θj) is a tautology. We

start by proving
∧
i∈J

(f(ιi ·�′)→θi) ∧ ∧
j∈J∩IN

¬f(ιj ·�′)�∧
i∈J

¬f(ιi ·�′).

∧
i∈J

(f(ιi ·�′)→θi) ∧ ∧
j∈J∩IN

¬f(ιj ·�′)

≡ ∧
i∈IC

(f(ιi ·�)∧�′ →θi) ∧ ∧
j∈J∩IN

¬f(ιj ·�′)

≡�′ → ∧
i∈IC

(f(ιi ·�)→θi) ∧ ∧
j∈J∩IN

¬f(ιj ·�′)

��′ → ∧
i∈IC

(f(ιi ·�)→θi) ∧ �′ →
(

�′∧ ∧
j∈J∩IN

¬f(ιj ·�′)
)

As �′ �¬f(ιi ·�) for i∈ IN \J and f(ιj ·�′)= f(ιj ·�) for j∈J

��′ → ∧
i∈IC

(f(ιi ·�)→θi) ∧ �′ →
( ∧

k∈IN \J
¬f(ιk ·�)∧ ∧

j∈J∩IN
¬f(ιj ·�)

)

≡�′ → ∧
i∈IC

(f(ιi ·�)→θi) ∧ �′ → ∧
j∈IN

¬f(ιj ·�)

≡�′ →
( ∧

i∈IC
(f(ιi ·�)→θi) ∧ ∧

j∈IN
¬f(ιj ·�)

)

using (*) and J ⊆ IC
��′ →

(∧
i∈J

¬f(ιi ·�)

)
≡∧

i∈J
¬(f(ιi ·�)∧�′)

≡∧
i∈J

¬f(ιi ·�′)

∀j∈J ∩IN ∃δ∈Dj :∧
i∈J

(f(ιi ·�′)→θi) ∧ ∧
k∈J∩IN ∧k≺ej

¬f(ιk ·�′)∧f(ιj ·�′)�δ is proved as follows.

Let j∈J ∩IN then∧
i∈J

(f(ιi ·�′)→θi) ∧ ∧
k∈J∩IN ∧k≺ej

¬f(ιk ·�′)∧ f(ιj ·�′)
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≡ ∧
i∈IC

(f(ιi ·�)∧�′ →θi) ∧ ∧
k∈J∩IN ∧k≺ej

¬f(ιk ·�′)∧ f(ιj ·�′)

≡�′ → ∧
i∈IC

(f(ιi ·�)→θi) ∧ ∧
k∈J∩IN ∧k≺ej

¬f(ιk ·�′)∧ f(ιj ·�′)

as f(ιi ·�′)≡ f(ιi ·�)∧�′ for i∈J
≡[�′ → ∧

i∈IC
(f(ιi ·�)→θi)∧ ∧

k∈J∩IN ∧k≺ej
¬f(ιk ·�) ∧ f(ιj ·�)]∧�′

� ∧
i∈IC

(f(ιi ·�)→θi) ∧ ∧
k∈J∩IN ∧k≺ej

¬f(ιk ·�) ∧ f(ιj ·�)∧�′

as �′ �¬f(ιi ·�) for i∈ IN \J
� ∧

i∈IC
(f(ιi ·�)→θi) ∧ ∧

k∈J∩IN ∧k≺ej
¬f(ιk ·�) ∧ f(ιj ·�)∧ ∧

l∈IN \J
¬f(ιl ·�)

� ∧
i∈IC

(f(ιi ·�)→θi) ∧ ∧
k∈IN ∧k≺ej

¬f(ιk ·�) ∧ f(ιj ·�)

Using (*) we know that there is a δ∈Dj such that the above sentence entails δ which concludes the
proof. �
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