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Abstract

An intelligent agent may receive information
about its environment from several different
sources. How should the agent merge these
items of information into a single, consistent
piece? Taking our lead from the contraction
+ expansion approach to belief revision, we
envisage a two-stage approach to this prob-
lem. The first stage consists of weakening the
individual pieces of information into a form
in which they can be consistently added to-
gether. The second, trivial, stage then con-
sists of simply adding together the informa-
tion thus obtained. This paper is devoted
mainly to the first stage of this process, which
we call social contraction. We consider both
a postulational and a procedural approach
to social contraction. The latter builds on
the framework of belief negotiation models
(Booth 2001). With the help of Spohn-type
rankings we provide two possible instantia-
tions of this extended framework. This leads
to two interesting concrete families of social
contraction functions.

1 INTRODUCTION AND
PRELIMINARIES

An intelligent agent may receive information about
its environment from several different sources. How
should the agent merge these pieces of information
into a single, consistent piece? This question has
recently received various treatments (see, for e.g.,
(Booth 2001, Cantwell 1998, Konieczny & Pino-Pérez
1998, Konieczny & Pino-Pérez 1999, Liberatore &
Schaerf 1998, Maynard-Reid & Shoham 2001, Meyer
2001, Revesz 1993)). The simplest thing to do would

be to just take the given pieces of information and
conjoin them. While this strategy would be fine if the
pieces of information are jointly consistent, it could
well be that some of the pieces stand in contradiction,
in which case the strategy breaks down. In this paper
we envisage a two-stage approach to the problem: (i)
the individual, raw pieces of information are manipu-
lated (more precisely, weakened) into a form in which
they become jointly consistent, and then (ii) the pieces
thus obtained are conjoined. Stage (ii) is trivial. Stage
(i) is not, and so forms the main topic of this paper.

A precedent for this two-stage approach can be found
in the literature on the closely-related area of belief re-
vision (Alchourrón et al. 1985, Gärdenfors 1988, Hans-
son 1999). Belief revision may essentially be thought
of as “binary merging”. It addresses the problem of
how to merge one item of information, usually taken
to represent the current beliefs of some agent, with
another item, representing some new piece of informa-
tion which the agent acquires. The idea, which dates
back to (Levi 1977) and is given succinct expression by
the Levi Identity (Gärdenfors 1988), is that this opera-
tion of revision is decomposed into two sub-operations:
(i) contraction: the current information is weakened
so that it becomes consistent with the new informa-
tion, then (ii) expansion: the new information is sim-
ply added to the result. Note that, in (i), only the
current information is weakened, not the new. This
reflects the traditional assumption that the new infor-
mation is always completely reliable. What we seek in
this paper is a generalised version of the contraction
operation, in which several items of information may
all be weakened simultaneously so that they become
consistent with one another. For this reason we call
the operations we are interested in social contraction
functions (SC functions for short).

We shall examine social contraction from two view-
points: a postulational one and a more procedural one.
For the latter we build on the framework of belief nego-



tiation models, which was introduced in (Booth 2001)
as a framework for binary merging in which the merg-
ing is achieved via a negotiation-like process. We ex-
tend this framework so that it can handle information
coming from n sources for n ∈ N, and show how a
given belief negotiation model yields an SC function.

The plan of the paper is as follows. We begin in Section
2 by formally defining SC functions via a small list of
basic properties we expect such an operation to satisfy.
We show how one of these basic properties allows us to
derive, from a given social contraction function, a list
of individual contraction functions (in the traditional
belief revision sense as described above) — one for each
information source. We also describe how a given SC
function yields a merging operator via a kind of “gen-
eralised” Levi Identity before ending the section with
a look at a few possible additional postulates for social
contraction, relating to the idea — familiar from belief
revision — of minimal change. The rest of the paper
is devoted to belief negotiation. The extended frame-
work is set down in Section 3, where it is shown how
each (extended) belief negotiation model yields an SC
function and, conversely, how every SC function can
be said to arise in this way. As we will see, the frame-
work is set at a very abstract level. Section 4 is all
about putting a little more flesh on the bones. Mak-
ing heavy use of Spohn-type rankings we provide two,
intuitively plausible, instantiations of the parameters
of a belief negotiation model, giving in the process two
concrete families of SC functions. We characterise the
behaviour of the individual contraction functions as
well as the merging operators which are derivable from
these particular families. It turns out that they are all
familiar from the literature. We thus give a new an-
gle on these operators by providing new “negotiation-
style” characterisations for them. We also test the SC
functions from each of these two families against the
extra minimal change postulates from Section 2. We
will see that the SC functions from the second family
fare better than those from the first in this regard. We
conclude in Section 5.

Preliminaries: We let W be the (finite) set of worlds,
i.e., truth-assignments, associated with some fixed
background propositional language generated from
finitely many propositional variables. The set of all
non-empty subsets of W we denote by B. Given S ⊆
W, we use S to denoteW−S. We assume throughout
that we have a fixed finite set Sources = {1, . . . , n}
of information sources (n ≥ 2). We work semantically
throughout, so each item of information provided by
a source i will take the form of a set Si ∈ B (so no
source ever provides the “inconsistent” information ∅).
An information profile (relative to Sources) is an ele-

ment of Bn. We use ~S, ~S1, etc. to denote information
profiles, with Si, S1

i , etc. denoting the ith element of
~S, ~S1, etc. The idea is that Si is the information in
~S belonging to source i. We will say an information
profile ~S is consistent when

⋂
i Si 6= ∅, otherwise it is

inconsistent. Given two information profiles ~S1 and
~S2, we will write ~S1 ⊆ ~S2 to mean S1

i ⊆ S2
i for all

i ∈ Sources. Finally if f is a function with range Bn,
we will use fi(~S) to denote the ith element of f(~S).

2 SOCIAL CONTRACTION
FUNCTIONS

Our first aim is to get a formal definition of SC func-
tions up and running. Intuitively we want an SC func-
tion to be a function f : Bn → Bn which, given an
information profile ~S provided by Sources, returns a
new information profile f(~S) which represents ~S modi-
fied so that its entries are jointly consistent. We imme-
diately require the following three properties of such
an f :

(sc1) ~S ⊆ f(~S)

(sc2) f(~S) is consistent

(sc3) If ~S is consistent then f(~S) = ~S

(sc1) decrees that the modification is carried out by
weakening the individual items of information. (sc2)
says that the end results of all these weakenings should
be jointly consistent. (sc3) says that if ~S is already
consistent then no modification is necessary. In addi-
tion to these three properties, we shall also find it con-
venient to assume that, amongst the sources, there is
one distinguished source who is completely reliable, in
the sense that any information provided by this source
can safely be assumed to be true and so should never
be weakened. We fix source n to be this com-
pletely reliable source, and reflect this by insisting
on the following rule for SC functions:

(sc4) fn(~S) = Sn

We will denote the set of sources minus n by Sources∗.
We make the following definition:

Definition 1 Let f : Bn → Bn be a function. Then f
is a social contraction function (relative to Sources)
iff it satisfies (sc1)–(sc4).

A benefit of including (sc4) among our basic pos-
tulates is that it gives us access to a list of indi-
vidual, “local” contraction functions — one for each
i ∈ Sources∗. These functions reveal, for each source
i, how any item of information from i would be weak-



ened in the face of a single second item when that item
is considered completely reliable.

Definition 2 Let f be an SC function and let
i ∈ Sources∗. We define the function 	f

i : B × B → B
by, for all S, T ∈ B, S 	f

i T = fi(~U), where ~U ∈ Bn
is such that Ui = S,Un = T and Uj = W for all
j 6∈ {i, n}. We call 	f

i i’s individual contraction func-
tion (relative to f).

(E.g., if n = 4, then S 	f
2 T is the 2nd entry of the

4-tuple f(W, S,W, T ).) Thus S 	f
i T represents the

result — according to f — of weakening information
S from source i so that it becomes consistent with T .
The following proposition is easy to prove.

Proposition 1 Let f be an SC function and let
i ∈ Sources∗. Then 	f

i satisfies (ic1) S ⊆ S 	f
i T ,

(ic2) (S 	f
i T ) ∩ T 6= ∅, and (ic3) If S ∩ T 6= ∅ then

S 	f
i T = S.

The properties (ic1)–(ic3) essentially correspond to
the well-known basic AGM postulates for contraction
(Alchourrón et al. 1985) minus the Recovery postulate,
which in our notation would correspond to “S 	f

i T ⊆
S ∪ T”. It will become apparent in Section 4 that
the 	f

i don’t generally satisfy this much debated (see
(Hansson 1999 pp. 71–74)) property.

Recall that a principle motivating factor behind defin-
ing SC functions was to use them as a stepping-stone
to defining merging operators. From a given SC func-
tion f , we define the merging operator ∆f relative to
Sources using a kind of “generalised” Levi Identity.
We set, for each information profile ~S,

∆f (~S) =
n⋂
i=1

fi(~S).

Our basic postulates for f yield a corresponding set
of basic properties for ∆f : (sc2) gives ∆f (~S) 6= ∅,
while from (sc3) we get that ~S is consistent implies
∆f (~S) =

⋂
i Si. Meanwhile (sc4) gives us ∆f (~S) ⊆

Sn, i.e., the result of the merging must always imply
the information provided by source n. In this respect
∆f resembles what is referred to by Konieczny and
Pino-Pérez as a merging operator with integrity con-
straints, or IC merging operators for short (Konieczny
& Pino-Pérez 1999), Sn here taking the role of the
integrity constraints.1

1At this point it is natural to ask whether it is possible
to take the converse direction and derive an SC function
from a given IC merging operator, just like, in belief revi-
sion, it is possible to derive a contraction operator from a
given revision operator via the Harper Identity (Gärdenfors
1988). This question will be taken up in future work.

2.1 MORE POSTULATES: MINIMAL
CHANGE

The postulates (sc1)–(sc4) form our core set of pos-
tulates for SC functions, but there is clearly scope for
other desirable properties to be put forward. One pos-
sible source for such further postulates is the idea of
minimal change, i.e., the idea that the modification of
~S to achieve consistency should be kept as “small” as
possible. Our condition (sc3) can already be said to
be a mild embodiment of this idea. In this subsection
we look at a couple of ways in which it can be taken
further. The first rule we consider is the following:

(sc5) For all i ∈ Sources∗, if Si ∩
⋂
j 6=i fj(~S) 6= ∅

then fi(~S) = Si

The motivation behind this rule is the feeling that, for
each i ∈ Sources∗, we should take fi(~S) = Si when-
ever possible. (Recall we already have fn(~S) = Sn by
(sc4).) Clearly if Si ∩

⋂
j 6=i fj(~S) 6= ∅ then it is pos-

sible. It is easy to see that, in the presence of (sc1)
and (sc4), (sc5) implies (sc3). It is also quite easy
to construct simple counter-examples which show that
(sc5) doesn’t hold in general for SC functions. (E.g.
define f by setting, for each i ∈ Sources, fi(~S) = Si if
either i = n or ~S is consistent, fi(~S) = W otherwise.)
However, even though (sc5) may be appealing from
a minimal change point of view, its adoption can lead
to counter-intuitive results, as the following example
shows:

Example 1 Suppose we have three sources, i.e.,
n = 3. Suppose source 1 provides the information
S 6=W, source 2 provides the complete opposite in-
formation S, and the completely reliable source 3 pro-
vides only the trivial information W. We first claim
that for any SC function f relative to these sources
which satisfies (sc5) we have either f1(S, S,W) = S
or f2(S, S,W) = S. To see this, suppose f1(S, S,W) 6=
S. Then, by (sc5), we must have S ∩ f2(S, S,W) ∩
f3(S, S,W) = ∅. Now we know by (sc4) (or
(sc1)) that f3(S, S,W) = W. Hence we have S ∩
f2(S, S,W) = ∅, i.e., f2(S, S,W) ⊆ S. Since we
also have S ⊆ f2(S, S,W) by (sc1), we conclude that
f2(S, S,W) = S which proves the claim. Given this,
we have for the corresponding merging operator that
either ∆f (S, S,W) ⊆ S or ∆f (S, S,W) ⊆ S. Hence
when merging S and S we are forced to accept one
or the other. However one can easily imagine a situa-
tion where we are unable to find any reason to prefer
S to S or vice-versa (e.g. sources 1 and 2 are equally
reliable, equally convinced their information is correct
etc.). In this case it would not seem irrational to with-



hold judgement on whether S or S holds in the merg-
ing and to expect, say, ∆f (S, S,W) = W. Merging
using an SC function which satisfies (sc5) rules out
this possibility.

This is reminiscent of the problems with so-called
maxichoice contraction and revision in the belief
change literature (see (Hansson 1999 pp. 76–77, 209–
210)). To understand why, it is helpful to change per-
spective slightly. For each SC function f and each
information profile ~S define the set Xf (~S) ⊆ Sources∗
by

Xf (~S) = {i ∈ Sources∗ | fi(~S) = Si}

In other words, given that Sources provides the
information ~S, Xf (~S) is the set of sources (other than
n) who do not weaken their information according
to f . The principle of minimal change suggests we
should take Xf (~S) to be an inclusion-maximal subset
of Sources∗. This is ensured by the following rule,
which bears a strong resemblance to the contraction
postulate “Fullness” (Hansson 1999 p. 77) which,
in turn, is a characteristic postulate of maxichoice
contraction:

(sc5+) For all i ∈ Sources∗,
if Si ∩ (

⋂
j∈Xf (~S) Sj) ∩ Sn 6= ∅ then i ∈ Xf (~S)

In the presence of (sc4), (sc5+) implies (sc5).
However, in the additional presence of the following
strengthening of (sc1), (sc5) becomes equivalent to
(sc5+):

(sc1+) For all i ∈ Sources, either fi(~S) = Si
or fi(~S) =W,

The rule (sc1+) says, in effect, that the informa-
tion from each source is either kept or discarded
completely.2

Although Example 1 suggests (sc5) may be too
strong, possible weakenings of it are at hand. One,
which brings the individual contraction functions into
the picture, is the following:

(sc5–) For all i ∈ Sources∗, if Si ∩
⋂
j 6=i fj(~S) 6= ∅

then fi(~S) ⊆ Si 	f
i Si

Note that Si 	f
i Si is the result of weakening Si so

that it becomes consistent with Si and so, intuitively,
contains those worlds in Si which, at least from i’s
viewpoint, are considered the most plausible. Hence

2Precisely such an assumption is made explicitly in
(Cantwell 1998). Its adoption here would effectively re-
duce social contraction to something akin to belief base
contraction (Hansson 1999).

the consequent of (sc5–) essentially says that if fi(~S)
has to contain worlds outside of Si, then it should
contain only the most plausible ones.

The last postulate we look at is motivated by the feel-
ing that social contraction should be entirely express-
ible in terms of the individual contraction functions.

(sc6) For all i ∈ Sources∗,
fi(~S) = Si 	f

i (
⋂
j 6=i fj(~S))

This postulate can also be interpreted as saying that
the outcome f(~S) of an operation of social contraction
represents a kind of equilibrium state. One in which
each source’s information Si is weakened just enough
— according to that source’s own individual contrac-
tion function — to be consistent with the joint result
of the weakenings of all the other sources. Since, by
Proposition 1, 	f

i satisfies (ic3), it is easy to see that
any SC function satisfying (sc6) also satisfies (sc5).
(In fact only the “⊆” direction of (sc6) is needed to
prove (sc5).)

3 EXTENDED BELIEF
NEGOTIATION MODELS

So far we have examined social contraction from a
strictly postulational viewpoint. In the rest of the pa-
per we adopt another, more procedural, perspective.
In (Booth 2001) the framework of belief negotiation
models was introduced as a framework for merging to-
gether information from just two different sources. The
idea was that the pieces of information were weak-
ened incrementally via a negotiation-like process until
“common ground” was reached, i.e., until they became
consistent with one another. The purpose of this sec-
tion is to extend this framework so that it handles
information coming from n different sources (one of
which is considered completely reliable) and show how
each such extended belief negotiation model N yields
an SC function fN . Let’s begin with a rough descrip-
tion of the framework.3

Suppose the information profile ~S is provided by
Sources. The idea is that we determine fN (~S) as fol-
lows. We start off with the information profile ~S0 = ~S.
If ~S0 is consistent then we just take fN (~S) = ~S0. But
if ~S0 is inconsistent then we perform what may be
thought of as a “round of negotiation” which is just a
contest between the sources. The losers of this contest
(for there may be several) must then “make some con-

3We remark that this framework shares some similari-
ties with the abstract formalisation of negotiation found in
(Wooldridge & Parsons 2000). For a more detailed treat-
ment of negotiation see (Walton & Krabbe 1995).



cessions”, i.e., make some weakening of their position
by admitting more possibilities, while the others stay
the same. Thus we arrive at the new information pro-
file ~S1 where ~S0 ⊆ ~S1. Now if ~S1 is consistent then we
set fN (~S) = ~S1. Otherwise the next round of negoti-
ation takes place. Once again the losers of this round
make concessions, and we keep going like this until ~Sj

is consistent, at which point we set fN (~S) = ~Sj . Now
let us spell this out in detail.

Let Ω denote the set of all finite sequences of informa-
tion profiles. Given ω = (~S0, . . . , ~Sm) ∈ Ω we will say
ω is increasing iff ~Sj ⊆ ~Sj+1 for all j = 0, 1, . . . ,m−1.
We define the set of sequences Σ ⊆ Ω by

Σ = {ω = (~S0, . . . , ~Sm) ∈ Ω | ω is increasing, and
~Sm is inconsistent}.

A sequence σ = (~S0, . . . , ~Sm) ∈ Σ represents a possi-
ble stage in the unfinished (since ~Sm is inconsistent)
negotiation process starting with ~S0. Here, the infor-
mation profile ~Sm describes the current standpoints of
the sources at stage σ. Given j < m, we let σj denote
that sequence consisting of the first j + 1 entries in σ,
i.e., σj = (~S0, . . . , ~Sj).

In the simple negotiation scenario described above
there were two ingredients in need of further spec-
ification. Firstly, we need to know how a round of
negotiation is carried out. To begin with, we don’t
worry about the precise details. We simply assume
the existence of a function g : Σ → 2Sources

∗
which

selects, at each negotiation stage σ, which parties
should make concessions. In other words g returns the
losers of the negotiation round at stage σ. Note that
here we are building in our assumption that source
n is completely reliable (and so never loses a round)
by taking the range of g to be 2Sources

∗
rather than

2Sources . We make two more mild restrictions on g.
Firstly, in order to avoid deadlock we need to assume
that at least one party must weaken at each stage:

(g0a) g(σ) 6= ∅

Secondly, suppose we reach a negotiation stage
σ = (~S0, . . . , ~Sm) such that Smi = W for some
i ∈ Sources∗. Then obviously at this stage i’s
information cannot be weakened any further. We
restrict g so that it selects only sources who still have
“room to manoeuvre”.

(g0b) i ∈ g(σ) implies Smi 6=W
(where σ = (~S0, . . . , ~Sm))

The second missing ingredient is then to decide what
concessions the losers of a negotiation round should
make. Once again we initially abstract away from the

actual process used to determine this and assume only
that we are given, for each σ = (~S0, . . . , ~Sm) ∈ Σ, a
function Hσ : Sources∗ → B with the interpretation
that Hσ(i) represents the weakening of Smi given that
i must weaken at stage σ. Once again to avoid dead-
lock, we require that this weakening be strict, unless
of course Smi =W:

(H0a) Smi ⊆ Hσ(i)

(H0b) Hσ(i) = Smi implies Smi =W

We can now make the following definition.

Definition 3 An extended belief negotiation model
(relative to Sources) is a pair N = 〈g, {Hσ}σ∈Σ〉
where g : Σ → 2Sources

∗
is a function which

satisfies (g0a) and (g0b), and, for each σ ∈ Σ,
Hσ : Sources∗ → B is a function which satisfies (H0a)
and (H0b).

From now on when we write “belief negotiation model”
we will mean an extended belief negotiation model in
the sense of the above definition.4

A belief negotiation model N then uniquely deter-
mines, for any given information profile ~S provided
by Sources, the complete process of negotiation on ~S.
This process is returned by the function fN : Bn → Ω
given by

fN (~S) = σ = (~S0, . . . , ~Sk)

where (i) ~S0 = ~S, (ii) k is minimal such that ~Sk is
consistent, and (iii) for each 0 ≤ j < k we have, for
each i ∈ Sources,

Sj+1
i =

{
Hσj (i) if i ∈ g(σj)
Sji otherwise.

A belief negotiation model N thus yields a function
fN : Bn → Bn, via fN above, by simply taking
fN (~S) = ~Sk. It is easy to check that fN forms an SC
function, and not much harder to show that, in fact,
every SC function can be said to arise in this way:

Theorem 1 Let f : Bn → Bn be a function. Then f is
an SC function iff f = fN for some belief negotiation
model N .

In what follows we use ∆N to denote the merging op-
erator defined from fN , and 	Ni to denote source i’s
individual contraction function 	fN

i relative to fN . A
4There are a couple of slight notational differences be-

tween this paper and (Booth 2001). In the latter paper
the function g picked up the actual information items to
be weakened rather than naming the sources from which
they came. Similarly the functions Hσ were defined directly
on the elements of Smi rather than the set of sources.



point to note about these latter functions is that they
depend only on the functions Hσ, i.e., we have the fol-
lowing result:

Proposition 2 Let N = 〈g, {Hσ}σ∈Σ〉 and N ′ =
〈g′, {Hσ}σ∈Σ〉 be two belief negotiation models which
differ only on their first component. Then, for each
i ∈ Sources∗, we have 	Ni = 	N ′i

4 INSTANTIATING THE
FRAMEWORK

A natural question to ask about the preceding frame-
work is: where do the functions g and Hσ of a belief
negotiation model come from? In this section we ex-
plore some possibilities — one for the Hσ and two for
g, leading to two different concrete families of SC func-
tions. To help us do this we first need to make some
extra demands on the type of information provided by
our sources. We assume that each source i ∈ Sources∗
provides not only a set Si ∈ B, but also some indica-
tion of the plausibility of all the worlds in W. Such an
indication is provided by a ranking.

Definition 4 A ranking is a function r : W → N.
We extend such an r to a function on 2B by setting,
for each T ∈ B, r(T ) = minw∈T r(w). Given S ∈ B
we say that r is a ranking relative to S iff r−1(0) = S.

Such rankings, or variants thereof, are a popular tool
in knowledge representation. They can be traced back
to the work of (Spohn 1988) and indeed have already
been employed in the context of both merging (see e.g.
(Meyer 2001, Meyer et al. 2001)) and belief revision
(see e.g. (Williams 1994)). A ranking provides, for
each w ∈ W, a measure of the plausibility of w being
the actual world. The lower r(w) is, the more plausible
it is considered to be. Rankings also allow us to talk
about degrees of certainty or belief. Given S ∈ B, we
can interpret r(S) as the degree of certainty that the
world is in S — the higher r(S) is, the more certain it
is that S contains the actual world. We now assume
that each time a source i ∈ Sources∗ provides the
information Si, he provides along with it a ranking
relative to Si. Formally, we assume we are given a
ranking assignment for Sources:

Definition 5 A ranking assignment (relative to
Sources) is a function R which assigns, to each
i ∈ Sources∗ and S ∈ B, a ranking [Ri(S)] relative
to S.

Note we assume source n does not provide a ranking,
just Sn as normal.5 Given this definition, we are now
in a position to describe our first instantiation of the
framework.

4.1 FIRST INSTANTIATION

How can we use a ranking assignment R to define suit-
able functions g and Hσ? Turning first to g, our idea
is this: the losers of the negotiation round at stage
σ = (~S0, . . . , ~Sm) should be those sources i who are
the least certain about their current standpoint Smi ,
according to the ranking which they have provided
along with their initial information S0

i . More precisely
we define g1 from R by setting

g1(σ) = {i ∈ Sources∗ | Smi 6=W and [Ri(S0
i )](Smi )

is minimal}

As for defining Hσ, the method we choose is quite sim-
ple. We assume that, for each σ = (~S0, . . . , ~Sm) ∈ Σ, if
source i has to weaken at stage σ, he does so by adding
to Smi those worlds not already in Smi which are the
most plausible according to the ranking i has provided
with his initial information S0

i . More precisely we set

Hσ(i) = Smi ∪ {w ∈ Smi | [Ri(S
0
i )](w) is minimal}

Given a ranking assignment R, we let N (R) denote
the belief negotiation model 〈g1, {Hσ}σ∈Σ〉 with g1 and
the Hσ derived from R as above. (It should be clear
that g1 and the Hσ satisfy the requisite properties from
Definition 3.) Let’s now see an example of N (R) “in
action”.

Example 2 For this example we assume our back-
ground propositional language contains just two
propositional variables, leadingW to contain just four
worlds which we denote here by a, b, c, d. We also as-
sume that Sources = {1, 2, 3}. Suppose source 1 gives
initial information {a}, source 2 gives {c} and com-
pletely reliable source 3 gives W (and so effectively
plays no role in the negotiation). Suppose our ranking
assignment R is such that [R1({a})] and [R2({c})] are
given as follows:

0 1 2 3
[R1({a})] a b c, d
[R2({c})] c a, d b

Here, the columns correspond to ranks. So, for
example, [R1({a})] gives world b a rank of 1, c a

5We also make an assumption of commensurability
(Meyer et al. 2001), i.e., that all sources use the same scale
when ranking the worlds according to plausibility.



rank of 2 etc. We construct the complete nego-
tiation process fN (R)({a}, {c},W) = σ stage by
stage, starting with σ0 = (〈{a}, {c},W〉). Since we
have obvious disagreement between sources 1 and
2, a first negotiation round is required. Now we
have [R1({a})]({a}) = 1 < 2 = [R2({c})]({c}), i.e.,
source 1 is less certain of his current standpoint
than source 2. Hence we have g1(σ0) = {1}, i.e.,
1 loses the round and so must weaken. We have
Hσ0(1) = {a} ∪ {w ∈ {a} | [R1({a})](w) is minimal},
i.e., 1 adds to {a} the most plausible non-a
worlds according to [R1({a})]. Since b is the
unique such world, this means Hσ0(1) = {a, b}
and so we reach the next negotiation stage
σ1 = (〈{a}, {c},W〉, 〈{a, b}, {c},W〉). Since con-
sistency has still not been reached, another ne-
gotiation round is necessary. This time we have
[R1({a})]({a, b}) = 2 = [R2({c})]({c}). Hence now
both sources are equally certain of their current
standpoints. Hence g1(σ1) = {1, 2}, i.e., both sources
must weaken. We have Hσ1(1) = {a, b} ∪ {w ∈ {a, b} |
[R1({a})](w) is minimal} = {a, b, c, d} = W and
Hσ1(2) = {c} ∪ {w ∈ {c} | [R2({c})](w) is minimal} =
{a, c, d}. Hence we reach the next stage σ2 =
(〈{a}, {c},W〉, 〈{a, b}, {c},W〉, 〈W, {a, c, d},W〉).
Since we have now reached consistency, we end the
process here with fN (R)({a}, {c},W) = σ2. From this
we deduce fN (R)({a}, {c},W) = 〈W, {a, c, d},W〉.
For the corresponding merging operator we have
∆N (R)({a}, {c},W) =

⋂3
i=1 fN (R)

i ({a}, {c},W) =
{a, c, d}.

As this example illustrates, the combined effect of our
g1 and the Hσ is, roughly speaking, a process in which
the sources simultaneously add worlds rank by rank to
their initial information until consistency is reached.
In particular, this results in the following behaviour
for the individual contraction functions 	N (R)

i :

Proposition 3 Let R be a ranking assignment and let
i ∈ Sources∗. Then, for all S, T ∈ B, S 	N (R)

i T =
{w ∈ W | [Ri(S)](w) ≤ [Ri(S)](T )}.

From this the following can be shown:

Proposition 4 Let R be a ranking assignment and
let i ∈ Sources∗. Then the function 	N (R)

i satisfies,
in addition to (ic1)–(ic3) from Proposition 1, the
following two properties:

(ic4) S 	N (R)
i (T1 ∪ T2) ⊆ S 	N (R)

i T1

(ic5) If (S 	N (R)
i (T1 ∪ T2)) ∩ T1 6= ∅ then
S 	N (R)

i T1 ⊆ S 	N (R)
i (T1 ∪ T2)

This means that 	N (R)
i belongs to the class of contrac-

tion operators known as severe withdrawal operators,
which were studied in (Rott & Pagnucco 1999). The
rules (ic4) and (ic5) essentially correspond to the pos-
tulates (−̈7a) and (−̈8) given there. We also have the
following nice characterisation of the merging operator
∆N (R):

Proposition 5 Let R be a ranking assignment. Then,
for all ~S ∈ Bn, ∆N (R)(~S) = {w ∈ Sn |
maxi∈Sources∗ [Ri(Si)](w) is minimal}.

This “minimax” operator is a generalised version of
the merging operator with integrity constraints ∆Max

given in (Konieczny & Pino-Pérez 1999), which em-
ploys a particular family of ranking assignments based
on a notion of (symmetric) distance between proposi-
tional worlds. Similar operators are also discussed in
(Meyer 2001, Meyer et al. 2001, Revesz 1993), and are
shown to satisfy several interesting properties.

How do the SC functions fN (R) fare with regard to
the minimal change postulates from Section 2.1? Well
quite badly as it turns out. Indeed the ranking as-
signment R used in Example 2 provides a counter-
example to show that the fN (R) do not, in general,
satisfy even the weakest postulate (sc5–) mentioned
there. To see this note that, in that example, we
have {a} ∩ fN (R)

2 ({a}, {c},W) ∩ fN (R)
3 ({a}, {c},W) =

{a} ∩ {a, c, d} ∩W 6= ∅. Now if fN (R) satisfied (sc5–)
then we would conclude that fN (R)

1 ({a}, {c},W) ⊆
{a} 	N (R)

1 {a}. But fN (R)
1 ({a}, {c},W) = W and

{a} 	N (R)
1 {a} = {a, b}. Hence fN (R) does not sat-

isfy (sc5–). Thus, interestingly, it seems that, while
∆N (R) might be quite well-behaved, there still seems
to be room for improvement regarding the behaviour
of fN (R).

4.2 SECOND INSTANTIATION

Our second instantiation of the framework is about
taking a more orderly approach to the negotiation pro-
cess. The idea now is that the sources in Sources∗ each
take it in turn to weaken their information according
to some given fixed running order. Each source, dur-
ing his turn, repeatedly weakens his information un-
til it becomes jointly consistent with the information
of all the sources who have taken their turn already.
This amounts to fixing fN (~S) one element at a time,
starting with fNn (~S) = Sn. So, using ≺ to denote
a given strict total order on Sources∗ and assuming
i1 ≺ i2 ≺ · · · ≺ in−1, we first focus on i1 and repeat-
edly weaken Si1 until it becomes consistent with Sn.
The result of this weakening we will take to be fNi1 (~S).



Of course it may be that Si1 ∩ Sn 6= ∅ to begin with,
in which case i1 needn’t do any weakening at all. Next
we focus on i2 and repeatedly weaken Si2 until it be-
comes consistent with fNi1 (~S) ∩ Sn. The result of this
weakening we will take to be fNi2 (~S). Then it is the
turn of i3, and so on through the rest of the sources.

To fit this idea into our framework we need to de-
fine suitable functions g and Hσ. For the former
we define the function g2 : Σ → 2Sources

∗
from our

given order ≺ by setting, for each negotiation stage
σ = (~S0, . . . , ~Sm),

g2(σ) = {i}, where i ∈ Sources∗ is minimal under
≺ such that Smi ∩ (

⋂
j≺i S

m
j ) ∩ Smn = ∅

For the Hσ we shall assume the weakenings are carried
out in exactly the same manner as before with the
help of a given ranking assignment R. Thus we define
the belief negotiation model N (R,≺) = 〈g2, {Hσ}σ∈Σ〉
where now g2 is defined from≺ as above and the Hσ are
defined from R as in the previous subsection. (Again
it is obvious that g2 satisfies the requisite properties
from Definition 3.) Let’s give a worked example of a
belief negotiation model of this type.

Example 3 Suppose once more that W = {a, b, c, d},
but this time that Sources = {1, 2, 3, 4}. We sup-
pose that our sources provide the information profile
~S = ({d}, {a, b, d}, {c}, {a, b, c}). We will use the be-
lief negotiation model N (R,≺), where ≺ is such that
1 ≺ 2 ≺ 3 and the ranking assignment R is such that
[R1({d})], [R2({a, b, d}] and [R3({c})] are given as fol-
lows:

0 1 2 3
[R1({d})] d a, b c

[R2({a, b, d})] a, b, d c
[R3({c})] c d a b

Let’s construct the sequence fN (R,≺)(~S) = σ stage by
stage, starting with σ0 = (~S0) where ~S0 = ~S. Clearly
~S0 is inconsistent, so a first negotiation round is nec-
essary. According to the definition of g2, determin-
ing who must weaken at this initial negotiation stage
is a matter of going through each of the sources in
Sources∗ in the order prescribed by ≺ and selecting
the first one for which S0

i ∩ (
⋂
j≺i S

0
j )∩S0

4 = ∅. Start-
ing then with the minimal source in Sources∗, which is
source 1, we immediately see that S0

1∩(
⋂
j≺1 S

0
j )∩S0

4 =
S0

1 ∩ S0
4 = {d} ∩ {a, b, c} = ∅. Hence source 1 is

the loser of this negotiation round, i.e., g2(σ0) = {1},
and so must make some weakening. Since Hσ0(1) =
{d} ∪ {w ∈ {d} | [R1({d})](w) is minimal} = {a, b, d}
this leads us to the next stage σ1 = (~S0, ~S1), where

~S1 = ({a, b, d}, {a, b, d}, {c}, {a, b, c}). Since consis-
tency has not yet been reached, a second negotia-
tion round is necessary. As a result of his weaken-
ing at the previous stage, source 1’s current stand-
point is no longer in conflict with that of source 4,
i.e., we have S2

1 ∩ S2
4 = {a, b, d} ∩ {a, b, c} 6= ∅.

Hence source 1 weakens no further. According to our
ordering ≺, we must consider source 2 next. But
S2

2 ∩ (
⋂
j≺2 S

2
j ) ∩ S2

4 = S2
2 ∩ S2

1 ∩ S2
4 = {a, b, d} ∩

{a, b, d} ∩ {a, b, c} 6= ∅ and so 2 need not weaken
either. Since source 3 is the only source left, this
means we must have g2(σ1) = {3}. Now Hσ1(3) =
{c} ∪ {w ∈ {c} | [R3({c})](w) is minimal} = {c, d}
which leads us to the next stage σ2 = (~S0, ~S1, ~S2)
where ~S2 = ({a, b, d}, {a, b, d}, {c, d}, {a, b, c}). Since
we have still not reached consistency, source 3 is re-
quired to do yet more weakening, i.e., we have g2(σ2) =
{3}. This time we have Hσ2(3) = {c, d} ∪ {w ∈
{c, d} | [R3({c})](w) is minimal} = {a, c, d} lead-
ing to the next stage σ3 = (~S0, ~S1, ~S2, ~S3) where
now ~S3 = ({a, b, d}, {a, b, d}, {a, c, d}, {a, b, c}). This
time we have reached consistency, so the process stops
here with fN (R,≺)(~S) = σ3 and fN (R,≺)(~S) = ~S3 =
({a, b, d}, {a, b, d}, {a, c, d}, {a, b, c}). For the corre-
sponding merging operator we get ∆N (R,≺)(~S) =⋂4
i=1 S

3
i = {a}.

Note that, by Proposition 2, the 	N (R,≺)
i are the same

as the 	N (R)
i from the previous subsection. Meanwhile

we can characterise ∆N (R,≺) with the help of the fol-
lowing piece of extra notation: We let <lex denote
the lexicographic ordering on Nn−1, i.e., given two tu-
ples ~x, ~y ∈ Nn−1 such that ~x = (x1, . . . , xn−1) and
~y = (y1, . . . , yn−1), we have ~x <lex ~y iff there exists
j such that (i) xj < yj and (ii) xi = yi for all i < j.
Then we have the following:

Proposition 6 Let R be a ranking assignment and let
≺ be a strict total order on Sources∗. Then, assum-
ing i1 ≺ i2 ≺ · · · ≺ in−1 and using rj as an abbrevia-
tion for [Rij (Sij )], we have ∆N (R,≺)(~S) = {w ∈ Sn |
(r1(w), r2(w), . . . , rn−1(w)) is minimal under <lex}.

Thus ∆N (R,≺)(~S) collects all the “best” worlds in Sn,
in the special sense where one world is considered “bet-
ter” than another if it is assigned lower rank by source
i1, or, in case they are assigned the same rank by i1, it
is assigned a lower rank by i2, or, in case they are also
assigned the same rank by i2, it is assigned a lower rank
by i3, or, etc. Thus the effect when merging is that
the opinion of source i is given precedence over that
of i′ whenever i ≺ i′. Such a lexicographic approach
to merging has been considered in (Meyer 2001) (see



Section 4.5 there) where the ≺ is interpreted as a given
ordering of reliability on the sources, i.e., the most re-
liable sources are given precedence.

Finally, what can we say this time about the SC func-
tions fN (R,≺)? First of all we may show the following:

Proposition 7 Let R be a ranking assignment and
≺ a strict total order on Sources∗. Then, for each
information profile ~S, we have

fN (R,≺)
i (~S) = Si	N (R,≺)

i

(
fN (R,≺)
n (~S)∩

⋂
j≺i

fN (R,≺)
j (~S)

)
.

In other words fN (R,≺)
i (~S) is equal to the result – ac-

cording to i’s individual contraction function relative
to fN (R,≺) – of weakening Si to be jointly consistent
with fN (R,≺)

n (~S) together with all the fN (R,≺)
j (~S) for

which j precedes i according to ≺. Using this together
with the fact that the 	N (R,≺)

i satisfy the properties
(ic4) and (ic5) from Proposition 4 then allows us to
prove:

Proposition 8 Let R be a ranking assignment and ≺
a strict total order on Sources∗. Then the SC function
fN (R,≺) satisfies (sc6).

Thus, imposing a strict “order of weakening” on the
sources has forced our SC function to satisfy the “equi-
librium” property (sc6) (and hence also (sc5) and
(sc5–)).

5 CONCLUSION

We have made a start on the study of social contrac-
tion functions, which are applicable to the problem of
merging information from multiple sources. The inten-
tion is that social contraction is to merging what con-
traction is to belief revision. We have considered both
a postulational and a procedural approach, managing
in the process of the latter to extend the belief negoti-
ation framework of (Booth 2001). Our investigations
are at an early stage, and much still needs to be done.
From the postulational viewpoint we feel there are still
many more postulates for social contraction waiting
to be discovered and evaluated. From the negotiation
viewpoint we looked in this paper at only two relatively
simple possible ways of instantiating the basic negoti-
ation framework. We are presently looking at various
other, more complex, ways in which this can be done.
One suggestion, due to Thomas Meyer, relates to the
Hσ-functions. Instead of blindly adding all the most
plausible worlds not yet in source i’s current stand-
point Smi as is done in this paper, the function Hσ(i)

should be more selective and add only those which are
already included in at least one of the current stand-
points Smj of the other sources at stage σ. (If none of
these most plausible worlds appear in any of the Smj
then Hσ(i) should add all of them as before.) Refine-
ments such as this could lead to more interesting social
contraction behaviour. Finally, we would also like to
explore more fully the relationship between the merg-
ing operators derived from social contraction and the
integrity constraints merging operators of (Konieczny
& Pino-Pérez 1999).
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