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Abstract

In studies of multi-agent interaction, especially in game
theory, the notion of equilibrium often plays a promi-
nent role. A typical scenario for the belief merging
problem is one in which several agents pool their be-
liefs together to form a consistent “group” picture of the
world. The aim of this paper is to define and study new
notions of equilibria in belief merging. To do so, we
assume the agents arrive at consistency via the use of a
social belief removal function, in which each agent, us-
ing his own individual removal function, removes some
belief from his stock of beliefs. We examine several
notions of equilibria in this setting, assuming a general
framework for individual belief removal due to Booth et
al. We look at their inter-relations as well as prove their
existence or otherwise. We also show how our equilib-
ria can be seen as a generalisation of the idea of taking
maximal consistent subsets of agents.

Introduction
The problem of multi-agent belief merging has received a
lot of attention in KR in recent years (Konieczny and Gre-
goire 2006; Konieczny and Pino Pérez 2002; Booth 2006).
The problem occurs when several agents each have their own
beliefs, and want to combine or pool their beliefs into a con-
istent “group” picture of the world. A problem arises when
two or more agents have conflicting beliefs. Then such con-
flicts need to be smoothed out. In studies of multi-agent
interaction the notion of equilibrium often plays a promi-
nent role (most famously in (Nash 1950)). It would there-
fore seem natural to investigate such notions in belief merg-
ing. The purpose of this paper is to define and study some
possible notions of equilibria in a belief merging setting.

To enable a clear formulation of such notions, we will em-
ploy the approach to merging advocated in (Booth 2006) and
inspired by the contraction+expansion approach to belief re-
vision (Gärdenfors 1988; Levi 1991), in which the merging
operation is explicitly broken down into two sub-operations.
In the first stage, the agents each modify their own beliefs
in such a way as to make them jointly consistent. This is
called social contraction in (Booth 2006). In the second,
trivial, stage, the beliefs thus obtained are conjoined. In this
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approach, the crucial question becomes “how do the agents
modify their beliefs in the first stage?” In this paper we as-
sume agents do so by removing some sentence from their
stock of beliefs. More precisely we associate to each agent
i its very own individual removal function >i which com-
putes the result of removing any given sentence. A social
belief removal function is then a function which, given a
profile of individual removal functions as input, returns a
(consistent) profile consisting of the results of each agent’s
removal. The central question studied in this paper is “when
can the outcome of a social removal function be said to be
in equilibrium?”.

How can we express the idea of equilibrium in social re-
moval? As our starting point we would like to propose the
following general principle for multi-agent interaction:

Principle of Equilibrium
Each agent simultaneously makes the appropriate re-
sponse to what all the other agents do.

It remains to formalise what “appropriate” means. In the
theory of strategic games (see, e.g., (Osborne and Rubin-
stein 1994) as well as the section “Entrenchment equilibria”
of the present paper) agents are assumed to have their own
preferences over the set of all outcomes. Then a Nash equi-
librium (Nash 1950) is a profile consisting of each agent’s
selected action, in which no agent can achieve a more pre-
ferred outcome by changing his action, given the actions of
the other agents are held fixed. Hence in this setting “appro-
priate” may be equated with “best” in a precise sense. We
will see that the framework of social belief removal offers up
new and interesting ways of formalising what “appropriate”
might mean.

Of course the explicit introduction of individuals’ removal
functions raises the question of what kind of belief removal
function we should assume is being used. Do agents use
AGM contraction (Alchourrón, Gärdenfors, and Makinson
1985), or severe withdrawal (Rott and Pagnucco 1999), or
perhaps a belief liberation function (Booth et al. 2005)?
Luckily there exists a general family, called basic removal
(Booth et al. 2004) which contains all these families and
more besides. Thus we find it convenient to use this family
as a basis.

The plan of the paper is as follows. In the next section we
set up the framework of social removal functions. Then we



focus on the agents’ individual removal functions, review-
ing some results about basic removal functions and giving
some concrete examples of such functions. Next, we in-
troduce our first equilibrium notion, that of a removal equi-
librium, and examine its compatibility with some plausible
minimal change properties, before proving the existence of
such equilibria for arbitrary basic removal profiles. We also
briefly look at the notion of perfect removal equilibria. Af-
ter this we move on to entrenchment equilibria, which can
be thought of as Nash equilibria of the strategic game where
agent preferences over outcomes are derived from their en-
trenchment orderings, and examine their relationship with
removal equilibria. We also suggest a possible refinement
of this idea, the strong entrenchment equilibrium. Next we
show how our equilibria can be thought of as generalising
the idea of taking maximal consistent subsets of agent, be-
fore looking at some related work by Meyer, Zhang et al. on
logical models of negotiation. We finish with a concluding
section.

Preliminaries: We work in a finitely-generated proposi-
tional language L. Classical logical consequence and logi-
cal equivalence are denoted by ` and ≡ respectively. W de-
notes the set of possible worlds/interpretations for L. Given
θ ∈ L, we denote the set of worlds in which θ is true by
[θ]. The set of non-tautologous sentences in L is denoted by
L∗. We will usually talk of belief sets, but assume a belief
set is always represented by a single sentence standing for
its set of logical consequences. We assume a set of agents
A = {1, . . . , n}. A belief profile is any n-tuple of belief sets.
Given two belief profiles we shall write (φi)i∈A ≡ (φ′i)i∈A
iff φi ≡ φ′i for all i, and write (φi)i∈A ≡∧ (φ′i)i∈A iff∧

i∈A φi ≡
∧

i∈A φ
′
i. Clearly we have ≡⊆≡∧ for belief pro-

files. We say the belief profile is consistent iff the conjunc-
tion of its elements is consistent.

Social belief removal
As we said above, we assume each agent i ∈ A comes
equipped with its own removal function >i, which tells it
how to remove any given sentence from its belief set. In
this paper we view >i as a unary function on the set L∗ of
non-tautologous sentences, i.e., agents are never required to
remove >. The result of removing λ ∈ L∗ from i’s belief
set is denoted by >i(λ). We assume i’s initial belief set can
always be recaptured from >i alone by just removing the
contradiction, i.e., i’s initial belief set is >i(⊥). We call any
n-tuple (>i)i∈A of removal functions a removal profile.

Definition 1 A social removal function F (relative to
A) is any function which takes as input any removal
profile (>i)i∈A and outputs a consistent belief profile
F((>i)i∈A) = (φi)i∈A such that, for each i ∈ A, there
exists λi ∈ L∗ such that φi ≡ >i(λi).

Each social removal function yields a merging operator for
removal profiles – we just take the conjunction

∧
i∈A φi of

the agents’ new belief profile. However in this paper our
main interest will be in the profile itself.

The above definition differs from Booth’s social contrac-
tion in two main ways. First, here we explicitly associate
from the outset an individual removal function to each i,

whereas this was only implicit in (Booth 2006). More im-
portantly, unlike in social contraction, we will allow agents
to use removal functions which don’t necessarily satisfy the
Inclusion property, i.e., removing a sentence may lead to
new beliefs entering i’s belief set. As is argued in (Booth
et al. 2005), this situation can arise quite naturally. This mo-
tivates the use of the term social removal rather than social
contraction.

What properties might we expect from a social removal
function F? Throughout the paper we will mention various
postulates for F, but to begin with the following two proper-
ties have – on the face of it – a strong appeal from a “minimal
change” viewpoint:

(FVac) If (>i(⊥))i∈A is consistent then
F((>i)i∈A) ≡ (>i(⊥))i∈A

(FVac∧) If (>i(⊥))i∈A is consistent then
F((>i)i∈A) ≡∧ (>i(⊥))i∈A

Both these rules deal with the case the initial belief sets of
the agents are already jointly consistent. (FVac) says that in
this case the agents’ beliefs should remain unchanged. Al-
though intuitively appealing, we will later have grounds for
believing this rule is a touch too strong (specifically in con-
texts where the agents’ individual removal functions might
not adhere to the Vacuity rule – see next section). Rule
(FVac∧) is weaker. It requires only that the result should
be conjunction-equivalent to the profile of the agents’ initial
belief sets.

Basic and hyperregular removal
What properties should be assumed of the individual re-
moval functions >i? We will assume agents always use ba-
sic removal.

Definition 2 A function > : L∗ → L is a basic removal
function iff it satisfies the following rules (Booth et al.
2004):

(>1) >(λ) 6` λ
(>2) If λ1 ≡ λ2 then >(λ1) ≡ >(λ2)
(>3) If >(χ ∧ λ) ` χ then >(χ ∧ λ ∧ ψ) ` χ
(>4) If >(χ ∧ λ) ` χ then >(χ ∧ λ) ` >(λ)
(>5) >(χ ∧ λ) ` >(χ) ∨>(λ)
(>6) If >(χ ∧ λ) 6` λ then >(λ) ` >(χ ∧ λ)

All these rules are familiar from the literature on belief re-
moval. Rule (>1) is the Success postulate which says the
sentence to be removed is no longer implied by the new be-
lief set, while (>2) is a syntax-irrelevance property. Rule
(>3) is sometimes known as Conjunctive Trisection (Hans-
son 1993a; Rott 1992). It says if χ is believed after removing
the conjunction χ ∧ λ, then it should also be believed when
removing the longer conjunction χ ∧ λ ∧ ψ. Rule (>4) is
closely-related to the rule Cautious Monotony from the area
of non-monotonic reasoning (Kraus, Lehmann, and Magidor
1991), while (>5) and (>6) are the two AGM supplemen-
tary postulates for contraction (Alchourrón, Gärdenfors, and
Makinson 1985).

Note the non-appearance in this list of the AGM contrac-
tion postulates Vacuity (>(⊥) 6` λ implies >(λ) ≡ >(⊥)),



Inclusion (>(⊥) ` >(λ)) and Recovery (>(λ)∧λ ` >(⊥)),
none of which are valid in general for basic removal. Inclu-
sion has been questioned as a general requirement for re-
moval in (Booth et al. 2005), while Recovery has long been
noted as controversial (see, e.g., (Hansson 1991)). Vacuity is
a little harder to argue against. It says if the sentence to be re-
moved is not in the intial belief set, then the belief set should
remain unchanged. Nevertheless we feel there are plausible
removal scenarios in which it may fail, one of which will be
described in our examples of basic removals below when we
introduce the subclass of prioritised removal functions. For
basic removals Inclusion actually implies Vacuity (Booth et
al. 2004).

Note: The postulates are the same ones as in (Booth et
al. 2004), but their appearance is changed to take into ac-
count the fact we take > to be a unary operator which re-
turns a sentence (rather than a logically-closed set of sen-
tences). We also leave out one rule from the list in (Booth
et al. 2004), which in our reformulation corresponds to
“>(⊥) ∧ ¬λ ` >(λ)”. This rule turns out to be redundant,
being derivable mainly from (>3).

As well as the above postulates, Booth et al. (2004) also
gave a semantic account of basic removal. A context is any
pair C = (≤,�) of binary relations over W such that (i) ≤
is a total preorder, i.e., transitive and connected, and (ii) �
is a reflexive sub-relation of ≤. From any such C we may
define a removal operator >C by setting

[>C(λ)] = {w ∈W | w � w′ for some w′ ∈ min≤([¬λ])}.

That is, the set of worlds following removal of λ is deter-
mined by first locating the ≤-minimal worlds in [¬λ], and
then taking along with these all worlds which are less than
them according to �. We call >C the removal function gen-
erated by C. Booth et al. (2004) showed >C is a basic re-
moval function and that in fact every basic removal function
is generated from a unique context. For another, closely-
related, family of belief removal functions see (Cantwell
2003).

Hyperregular removal
In this paper, another property which we will find useful, es-
pecially for technical reasons, is Hyperregularity (Hansson
1993b):

If > (λ ∧ χ) 6` λ then > (λ ∧ χ) ≡ >(λ).

This rule says if the removal of λ∧χ excludes λ then remov-
ing λ ∧ χ is the same as removing just λ. This property is
very strong. Not only does it imply Vacuity, but in the pres-
ence of (>1) and (>2) it implies (>3)-(>6). It is probably
too strong to be required in general. Indeed given (>1) and
(>2) it can be shown to imply the following “Decomposi-
tion” property of removal, which has been noted as overly
strong in (Gärdenfors 1988, p66):

>(λ ∧ χ) ≡ >(λ) or > (λ ∧ χ) ≡ >(χ).

Despite this it is nevertheless still satisifed by several inter-
esting sub-classes of basic removal (see the examples be-
low), and when proving results we will sometimes find it

a useful stepping-stone towards the more general basic re-
moval. In terms of contexts, it corresponds to requiring the
following condition on (≤,�), for all w1, w2, w3 ∈W :

(C-hyp) If w1 � w2 and w2 ∼ w3 then w1 � w3

(where ∼ is the symmetric closure of ≤). In other words,
whether or not w1 � w2 depends only on the ≤-rank of w2.

Definition 3 A hyperregular removal function is any basic
removal function satisfying Hyperregularity.

In (Booth et al. 2004) it was shown that hyperregular re-
moval functions correspond precisely to the class of linear
liberation operators from (Booth et al. 2005).

Some examples of basic removal functions
We now give three concrete families of operators, all of
which come under the umbrella of basic removal. These
families will be useful when we come to describing exam-
ples of equilibria.

(i). Prioritised removal Let 〈Σ,v〉 be any finite set
of consistent sentences Σ, totally preordered by a relation
v over Σ. Intuitively the different sentences in Σ corre-
spond to different possible extensions, prioritised by v (and
with sentences lower down in the ordering given higher
priority). Given such a set, for any λ ∈ L∗ let Σ(λ)
= {γ ∈ Σ | γ 6` λ}. Then we define >〈Σ,v〉 from 〈Σ,v〉 by
setting:

>〈Σ,v〉(λ) =
{ ∨

minv Σ(λ) if
∨

Σ 6` λ
> otherwise.

In other words, after removing λ, the new belief set is just
the disjunction of all the v-minimal elements in Σ which
do not entail λ. In case there is no sentence in Σ which
fails to imply λ, then the result is just >. We will call any
removal function definable in this way a prioritised removal
function. A similar family of removal has also been studied
in (Bochman 2001).

One can easily check that >〈Σ,v〉 satisfies (>1)-(>6)
and so forms a basic removal function. Note however that
>〈Σ,v〉 will fail to satisfy Vacuity (hence also Hyperregular-
ity) in general. For example suppose Σ = {p,¬p} but v is
the “flat” ordering on Σ which ranks both sentences equally.
This would correspond to a situation in which an agent has
equally good reasons to believe p and ¬p. The belief set cor-
responding to this is then >〈Σ,v〉(⊥) = p∨¬p, i.e., since the
agent cannot choose between p and ¬p, he commits to nei-
ther. But >〈Σ,v〉(p) = ¬p. That is, the direction to remove
p tips the balance in favour of ¬p, and the agent thus comes
to believe ¬p, even though p was not in the initial belief set.
We take this plausible removal scenario as indication that the
Vacuity rule may be too strong in general.
(ii). Severe withdrawal (Rott and Pagnucco 1999). A se-
vere withdrawal function may be represented by a logical
chain ρ = β1 ` β2 ` · · · ` βm, with >ρ(λ) = βi, where i is
minimal such that βi 6` λ (equals > if no such i exists). Se-
vere withdrawal functions always satisfy Inclusion and Hy-
perregularity. It is easy to see they form a special case of
prioritised removal. Severe withdrawal functions also have



a simple representation in terms of their generating contexts
(≤,�). They are just those basic removals for which ≤=�.
(iii). σ-liberation (Booth et al. 2005). σ-liberation func-
tions again use a sequence of sentences σ = (α1, . . . , αs).
Given such σ and λ ∈ L∗, define a sequence of sentences
fi(σ, λ) inductively on i by setting f0(σ, λ) = >, and then
for i > 0,

fi(σ, λ) =
{
fi−1(σ, λ) ∧ αi if fi−1(σ, λ) ∧ αi 6` λ
fi−1(σ, λ) otherwise.

In other words, fs(σ, α) is obtained by starting with >, and
then working through σ from left to right, adding each sen-
tence provided doing so does not lead to the inference of λ.
(In (Booth et al. 2005) the direction was right-to-left, but this
difference is inessential.) Then >σ(λ) = fs(σ, λ). (This is
very closely-related to the “linear base-revision” of (Nebel
1994).) σ-liberation functions do not satisfy Inclusion in
general, but they do satisfy Hyperregularity (and hence also
Vacuity). In terms of their generating contexts, σ-liberation
functions correspond to those contexts (≤,�) which satisfy
the Hyperregularity condition (C-hyp) and for which � is
transitive.

The three families described above are inter-related as fol-
lows:

severe withdrawal ⊂ σ-liberation ⊂ prioritised removal.

The inclusions are strict. In addition to these three, Booth et
al. (2004) showed basic removal includes many other well-
known families of removal functions, including systematic
withdrawal (Meyer et al. 2002), AGM contraction and even
AGM revision.1

In the rest of the paper we shall assume the domain of
a social removal function is the set of all n-tuples of basic
removal functions.

Removal equilibria
When is the outcome (φi)i∈A of an operation of social re-
moval an equilibrium point? Our first idea is the following.
Definition 4 (φi)i∈A is a removal equilibrium for (>i)i∈A
iff it is consistent and, for each i ∈ A, φi ≡ >i(¬

∧
j 6=i φj).

This definition is a direct formulation of the idea that each
agent removes precisely the “right” sentence to be consis-
tent with every other agent. As such this seems like a good
candidate for a first formalisation of the word “appropriate”
in our Principle of Equilibrium from the introduction.
Example 1 Assume A = {1, 2} and suppose both agents
use severe withdrawal to remove beliefs. Let >1 and >2 be
specified by the logical chains (p ∧ q) ` q and (¬p ∧ ¬q) `
(¬p∨¬q) resp. Then there are three possible removal equi-
libria for the profile (>1,>2): (1) (p∧q,>), corresponding
to a case where 1 removes nothing and 2 removes every-
thing, (2) (>,¬p∧¬q), corresponding to the opposite case,
and (3) (q,¬p ∨ ¬q), corresponding to the case where both
agents give up something, but not everything.

1The fact that basic removal also covers AGM revision is what
motivated our choice of the contraction-revision “hybrid” symbol
> to denote removal functions.

We might be interested in requiring the following prop-
erty for social removal functions:

(FREq) F((>i)i∈A) is a removal equilibrium for (>i)i∈A.

Is (FREq) even consistent? In other words, do removal
equilibria always exist for any profile of basic removal
functions? We shall shortly answer this question in the
affirmative. But before that we examine such equilibria
in the special case when (>i(⊥))i∈A is consistent, and
examine the compatibility of (FREq) with (FVac) and
(FVac∧). First, the following example shows (FREq) is
not compatible with (FVac).

Example 2 Again suppose A = {1, 2}. Suppose agent 1
uses the prioritised removal function >〈Σ,v〉 where Σ =
{p,¬p} and v is the flat priority ordering, and suppose
agent 2 uses the severe withdrawal function specified by the
single element logical chain (p). We have >1(⊥) ≡ >
and >2(⊥) = p. Then >1(⊥) ∧ >2(⊥) is equivalent to
p and so is clearly consistent, but (>1(⊥),>2(⊥)) is not
a removal equilibrium. This is because, while we do have
>2(¬>) ≡ p, we have >1(¬p) ≡ p 6≡ >.

Thus for general basic removal profiles, we cannot re-
quire both (FREq) and (FVac). At first glance it might
be thought (FVac) is unquestionable, and so it is (FREq)
which must be given up. However we believe that as soon as
one takes the step – as we do – to relax Vacuity for individual
removal >, then (FVac) itself becomes less “untouchable”.
Thus we believe this incompatibility with (FVac) should not
by itself be taken as reason to reject (FREq). Furthermore
the next result (which may be proved using the same con-
struction as in Prop. 9 below) shows (FREq) is compatible
with (FVac∧).
Proposition 1 If (>i(⊥))i∈A is consistent then there ex-
ists a removal equilibrium (φi)i∈A for (>i)i∈A such that
(φi)i∈A ≡∧ (>i(⊥))i∈A.

In Example 2 we do indeed have a removal equilib-
rium which is conjunction-equivalent to (>1(⊥),>2(⊥)),
namely (p, p).

Note that in Example 2, agent 1 uses a removal function
which does not satisfy Vacuity. The next result says that
if we do insist on Vacuity for individual removal functions,
then we do achieve compatibility with (FVac).
Proposition 2 Suppose each >i satisfies Vacuity, and sup-
pose (>i(⊥))i∈A is consistent. Then (>i(⊥))i∈A is a re-
moval equilibrium for ((>i)i∈A).

However, even if the >i satisfy Vacuity, this might not be
the only removal equilibrium. In other words even in this
restricted domain case, (FREq) is not enough by itself to
imply (FVac) or even (FVac∧).

Example 3 Let > be the σ-liberation function determined
by the sequence (p,¬p). Then the belief set associated to >
is >(⊥) = p. Now suppose we have n agents, all using this
same removal function >. Then for the resulting removal
profile there are two removal equilibria. As well as the ex-
pected (p)i∈A we also get (¬p)i∈A!



It might seem bizarre that (¬p)i∈A should be recognised
as an equilibrium in this example. Why should the agents all
jump across to ¬p when they can just as well stay with the
comfort of p? In fact the situation is analogous to that with
Nash equilibrium itself. We shall expand on this point later
after we introduce the notion of entrenchment equilibria.

By restricting the domain of F further, we do force a
unique removal equilibrium in the case when the initial be-
lief sets are jointly consistent.
Proposition 3 Suppose each >i satisfies Inclusion (and
hence also Vacuity). Then if (>i(⊥))i∈A is consistent then
it is the only removal equilibrium for (>i)i∈A.

Existence of removal equilibria
In this section we prove that removal equilibria are guaran-
teed to exist when the agents use basic removal functions
to remove beliefs. First we concentrate on the case when all
agents use hyperregular removal, providing two concrete so-
cial removal operators which satisfy (FREq). We will build
on this case to prove existence in the general basic removal
case.

The hyperregular case: First method
Our first social removal function F1 requires the upfront
specification of a linear order on A. Without loss we
take this order here to be just the numerical one on A =
{1, 2, . . . , n}. Given a removal profile (>i)i∈A, we define
F1((>i)i∈A) = (φi)i∈A inductively by setting

φi = >i(¬
∧
j<i

φj).

In other words, φ1 is just taken to be agent 1’s initial belief
set >1(⊥), and then each agent takes his turn to remove the
negation of the conjunction of the belief sets of all those
agents whose turn has already passed. By an easy induction
on i, and using the fact each >i satisfies (>1), we know
¬

∧
j<i φj ∈ L∗ and so >i(¬

∧
j<i φj) is well-defined. In

particular we know from (>1) that φn = >n(¬
∧

j<n φj) 6`
¬

∧
j<n φj and so (φi)i∈A is consistent.

Proposition 4 If all the >i satisfy Hyperregularity then F1

returns a removal equilibrium for (>i)i∈A.

Proof. From the above remarks we know (φi)i∈A is consis-
tent. It remains to show, for all i, φi ≡ >i(¬

∧
j 6=i φj). We

know φi = >i(¬
∧

j<i φj). Since ¬
∧

j<i φj ` ¬
∧

j 6=i φj

this is equivalent to

φi ≡ >i((¬
∧
j<i

φj) ∧ (¬
∧
j 6=i

φj)).

Since (φi)i∈A is consistent we have φi 6` ¬
∧

j 6=i φj and
so we may apply Hyperregularity to deduce the required
conclusion. �

F1 might not return a removal equilibrium for general ba-
sic removal profiles. This can be seen on Example 2, where
running the above procedure returns the non-equilibrium
(>, p).

What other properties does F1 satisfy? Well to begin, it
can be shown to satisfy (FVac) (in the hyperregular case).
Also, let’s say two removal functions > and >′ are revision-
equivalent iff >(λ) ∧ ¬λ ≡ >′(λ) ∧ ¬λ for all λ ∈ L∗.
(i.e., the revision functions defined from them via the Levi
Identity (Levi 1991) are the same). Then we have:

Proposition 5 F1 satisfies the following rule for social re-
moval functions:

(FRev∧) If >i and >′
i are revision-equivalent for each

i ∈ A then F((>i)i∈A) ≡∧ F((>′
i)i∈A).

In fact F1 satisfies this property even in the general ba-
sic removal case. Letting F1((>i)i∈A) = (φi)i∈A and
F1((>′

i)i∈A) = (φ′i)i∈A, the proof proceeds by induction
on i that

∧
j≤i φj ≡

∧
j≤i φ

′
j . This result implies that if we

are only interested in the result of merging, we could just
focus on revision functions only.

One questionable property of F1 is that we always get
φ1 = >1(⊥) for any input removal profile. Thus agent 1
never leaves his initial belief set. He assumes a dictator-like
role. Our second construction aims at rectifying this.

The hyperregular case: Second method
Our second construction is just like the first, except now, at
the start of the process, agent 1 removes some fixed, possibly
consistent, sentence χ (chosen independently of the given
removal profile) rather than remove ⊥ as before. Formally,
the function F2 makes use of an auxilliary function s which
takes as arguments a removal profile (>i)i∈A together with
a sentence χ ∈ L∗, and outputs a belief profile (ηi)i∈A. The
ηi are defined inductively by setting η1 = >1(χ), and then
for i > 1,

ηi = >i(¬
∧
j<i

ηj).

Note that if χ ≡ ⊥ then this is just F1((>i)i∈A). Is this
a removal equilibrium? In fact the result of this operation
will be a removal equilibrium for agents 2, . . . , n, but not
necessarily for agent 1.

Proposition 6 Assume all >i satisfy Hyperregularity and
let s(χ | (>i)i∈A) = (ηi)i∈A. Then for each i > 1,
ηi ≡ >i(¬

∧
j 6=i ηj), but in general η1 6≡ >1(¬

∧
j>1 ηj).

In case η1 6≡ >1(¬
∧

j>1 ηj) we just try again with
s(χ ∧ ¬

∧
j>1 ηj | (>i)i∈A). Precisely, F2 is defined via

the following iterative procedure:

1. Calculate s(χ | (>i)i∈A) = (ηi)i∈A.

2. If η1 ≡ >1(¬
∧

j>1 ηj) then STOP and output
F2((>i)i∈A) = (ηi)i∈A. Otherwise set χ := χ ∧
¬

∧
j>1 ηj and go to step 1.

In case the termination condition in step 2 is not met, it
can be shown χ 6≡ χ ∧ ¬

∧
j>1 ηj , so we generate a stricly

stronger sentence to input back into s(· | (>i)i∈A) in step 1.
Hence the process continues at most until we input ⊥. But
in this case s(⊥ | (>i)i∈A) = F1((>i)i∈A) as we have seen.
Hence:



Proposition 7 If all the >i satisfy Hyperregularity then F2

satisfies (FREq).

For example, if we run this method on Example 3, tak-
ing χ = p, we obtain the 2nd equilibrium F2((>)i∈A) =
(¬p)i∈A. Hence we see F2 does not validate (FVac∧). It
also does not satisfy (FRev∧), since it can be shown the
σ-liberation function from Example 3 is revision-equivalent
to the severe withdrawal function >ρ determined by the 1-
element chain ρ = (p). But if we again take χ = p then
F2((>ρ)i∈A) = (p)i∈A.

Note although agent 1 no longer has dictator-like powers
in F2, agent j still dominates all agents k for which 2 ≤ j <
k, in the sense that if F2((>i)iA) = (φi)i∈A, we always end
up with φj = >j(¬

∧
s<j φs). This means j never takes

into account the beliefs of k > j when calculating his new
beliefs.

A natural question to ask is: is every removal equilibrium
for (>i)i∈A obtainable by the above iterative method for ap-
propriate choices of ordering of agents and starting points
χ? The next example shows the answer is generally no.

Example 4 Suppose three agents, all using severe with-
drawal functions specified respectively by the following log-
ical chains:

>1 : (p↔ ¬q) ` (p ∨ q),
>2 : ¬q ` (p ∨ ¬q),
>3 : ¬p ` (¬p ∨ q).

Then the reader may check

(φ1, φ2, φ3) = (p ∨ q, p ∨ ¬q,¬p ∨ q)

is a removal equilibrium (giving a merging result of φ1 ∧
φ2 ∧ φ3 ≡ p ∧ q). However, note this equilibrium has the
special property that for each i, there is no proper subset
X ⊂ {j ∈ A | j 6= i} such that φi ≡ >i(¬

∧
j∈X φj).

Hence this point cannot be reached using F2, since as we
just remarked, there we always end up with φ2 ≡ >2(¬φ1).

In the above example it could be said that at the point
(p ∨ q, p ∨ ¬q,¬p ∨ q) the three agents are all in a state of
perfect tension with regard to one another. Each agent con-
tributes equally to the equilibrium. We make the following
definition:

Definition 5 Let (φi)i∈A be a removal equilibrium for
(>i)i∈A. Then it is a perfect removal equilibrium iff for each
i, there is no proper subset X ⊂ {j ∈ A | j 6= i} such that
φi ≡ >i(¬

∧
j∈X φj).

The next question is: do perfect removal equilibria al-
ways exist for any given removal profile? The answer is
no, because according to the definition we may not have
φi ≡ >i(¬

∧
j∈∅ φj), i.e., we may not have φi ≡ >i(⊥).

However, we may conceive of examples in which, for ev-
ery removal equilibrium there exists at least one agent i for
which φi ≡ >i(⊥). Indeed this will typically happen in the
case of drastic removal profiles, see the section “Equilibria
as maxiconsistent sets” below.

Existence: The general case
We have established that if all agents use hyperregular re-
moval, then removal equilibria are guaranteed to exist. We
now extend this fact to the case of arbitrary basic removal
profiles. Given an arbitrary (>i)i∈A, we first convert each
>i to its hyperregular version >h

i , and then show that ev-
ery removal equilibrium for (>h

i )i∈A can be converted into
an equilibrium for the original profile. To do this we go
back to the semantic representation of basic removal func-
tions which was mentioned after Defn. 2.

Definition 6 Let > be a basic removal function and (≤,�)
its generating context. Then the hyperregular version of >
is the the removal operator >h generated by the context
(≤,�h), where �h is defined by:

w1 �h w2 iff w1 � w3 for some w3 s.t. w3 ∼ w2.

(where ∼ is the symmetric closure of ≤).

The following are the relevant properties of >h:

Proposition 8
(i). >h satisfies Hyperregularity.
(ii). For all λ ∈ L∗, >(λ) ` >h(λ).
(iii). > and >h are revision-equivalent.

Now, suppose we start with arbitrary (>i)i∈A and suppose
we have found some removal equilibrium (φ′i)i∈A for the
hyperregular versions (>h

i )i∈A. Then for each i set

φi = >i(¬(
∧
j<i

φj ∧
∧
j>i

φ′j)).

Proposition 9 (φi)i∈A is a removal equilibrium for
(>i)i∈A. Furthermore (φi)i∈A ≡∧ (φ′i)i∈A.

Proof. The proof depends on the following property:∧
j∈A

φ′j ` φi ` φ′i for all i ∈ A (1)

This property is proved by induction on i. For i = 1 we have
φ1 = >1(¬

∧
j>1 φ

′
j) and φ′1 = >h

1 (¬
∧

j>1 φ
′
j). Hence the

first logical implication above reduces to

(
∧
j>1

φ′j) ∧>h
1 (¬

∧
j>1

φ′j) ` >1(¬
∧
j>1

φ′j),

which holds by Prop. 8(iii), while the second logical impli-
cation reduces to

>1(¬
∧
j>1

φ′j) ` >h
1 (¬

∧
j>1

φ′j),

which holds by Prop. 8(ii). This establishes the base case of
the induction.

Now let i > 1 and assume the property holds for all j < i.
Note that this implies∧

j∈A
φ′j ≡

∧
j<i

φj ∧
∧
j≥i

φ′j .



We have φi = >i(¬(
∧

j<i φj ∧
∧

j>i φ
′
j)) and φ′i =

>h
i (¬

∧
j 6=i φ

′
j). Given all this the first logical implication

in (1) above may be rewritten as

(
∧
j<i

φj ∧
∧
j>i

φ′j)∧>h
i (¬

∧
j 6=i

φ′j) ` >i(¬(
∧
j<i

φj ∧
∧
j>i

φ′j)).

Now since φj ` φ′j for all j < i (inductive hypothesis) we
know ¬

∧
j 6=i φ

′
j ` ¬(

∧
j<i φj ∧

∧
j>i φ

′
j). Hence, using

the following derived property of basic removal functions
(which is mainly a consequence of (>3)),

(>A) If λ ` χ then ¬χ ∧>(λ) ` >(χ),

we see the left-hand side above logically implies (
∧

j<i φj∧∧
j>i φ

′
j)∧>h

i (¬(
∧

j<i φj∧
∧

j>i φ
′
j). From this we get the

right-hand side as a logical conclusion from Prop. 8(iii).
For the second implication in (1) φi ` φ′i we must show

>i(¬(
∧
j<i

φj ∧
∧
j>i

φ′j)) ` >h
i (¬

∧
j 6=i

φ′j).

By Prop. 8(ii) it suffices to show

>h
i (¬(

∧
j<i

φj ∧
∧
j>i

φ′j)) ` >h
i (¬

∧
j 6=i

φ′j).

By the indictive hypothesis φj ` φ′j for all j < i we
know ¬

∧
j 6=i φ

′
j ` ¬(

∧
j<i φj ∧

∧
j>i φ

′
j) and so we

may use (>6) to obtain this implication provided we can
show >h

i (¬
∧

j 6=i φ
′
j) 6` ¬(

∧
j<i φj ∧

∧
j>i φ

′
j). Since

>h
i (¬

∧
j 6=i φ

′
j) = φ′i this just boils down to showing∧

j<i φj ∧
∧

j≥i φ
′
j is consistent. But as remarked above,

the inductive hypothesis implies this is equivalent to
∧

j φ
′
j

which is clearly consistent. This completes the inductive
step and so our property is proved, namely∧

j∈A
φ′j ` φi ` φ′i for all i ∈ A.

Note that this implies, for all i,∧
j∈A

φ′j ≡
∧
j≤i

φi ∧
∧
j>i

φ′j . (2)

In particular
∧

j∈A φ
′
j ≡

∧
j∈A φj , which proves the second

part of the proposition. Now, we want to show (φi)i∈A is a
removal equilibrium for (>i)i∈A, which means we need to
show, for all i ∈ A, φi ≡ >i(¬

∧
j 6=i φj), i.e.,

>i(¬(
∧
j<i

φj ∧
∧
j>i

φ′j)) ≡ >i(¬
∧
j 6=i

φj).

For simplicity let us write σ = ¬(
∧

j<i φj ∧
∧

j>i φ
′
j) and

ρ = ¬
∧

j 6=i φj . So we must show >i(σ) ≡ >i(ρ). Using
the just established fact that φj ` φ′j for all j we know σ ` ρ
and so σ ≡ ρ∧ (σ∨¬ρ). Hence >i(σ) ≡ >i(ρ∧ (σ∨¬ρ)).
Now using (>4) and (>6) we have >i(ρ∧(σ∨¬ρ)) ≡ >i(ρ)
if >i(ρ ∧ (σ ∨ ¬ρ)) ` σ ∨ ¬ρ. Hence if we can show
>i(σ) ` σ ∨ ¬ρ, equivalently >i(σ) ∧ ¬σ ` ¬ρ,

then we obtain the desired conclusion. But we have
>i(σ) ∧ ¬σ ≡

∧
j≤i φi ∧

∧
j>i φ

′
j . From property (2)

this in turn is equivalent to
∧

j∈A φj , and so we obtain
>i(σ) ∧ ¬σ `

∧
j 6=i φj ≡ ¬ρ as required. �

The second part of this proposition implies that if we are
interested only in the result of merging, we might as well
just use the Hyperregular versions.

Entrenchment equilibria
In this section we investigate another equilibrium notion for
social belief removal, which is more directly comparable to
the usual notion of Nash equilibrium in strategic games. To
do so we will first show how any removal profile (>i)i∈A
defines a particular strategic game G((>i)i∈A) and then use
the Nash equilibria of this game to define our new notion of
equilibrium. We start by recalling the definitions of strate-
gic game and Nash equilibrium. (See, e.g., (Osborne and
Rubinstein 1994).)

Definition 7 A strategic game (over A) is a pair
〈(Ai)i∈A, (-i)i∈A〉, where, for each i ∈ A:

• Ai is the set of actions available to agent i,
• -i is a total preorder over ×i∈AAi, i.e., the preference

relation of agent i.

The set ×i∈AAi is the set of action profiles for the agents
in A, i.e., the set of tuples consisting of a chosen action
ai ∈ Ai for each agent i. Given two action profiles (ai)i∈A
and (bi)i∈A, (ai)i∈A -j (bi)i∈A means agent j prefers (the
outcome resulting from) the action profile (bi)i∈A at least as
much as (ai)i∈A.

Definition 8 A Nash equilibrium of a strategic game
〈(Ai)i∈A, (-i)i∈A〉 is an action profile (a∗i )i∈A such that, for
each j ∈ A, and any aj ∈ Aj we have (ai)i∈A -j (a∗i )i∈A,
where ai = a∗i for i 6= j.

In a Nash equilibrium no single agent can change his action
in a way which leads to a more preferred outcome for him,
given that the other agents’ actions remain fixed.

How can we define a strategic game from a removal pro-
file? Well first note in our situation of social belief removal
too each agent takes an action – he chooses which sentence
to remove. That is, the set of possible actions of agent i may
be identified with L∗. What, then, is the preference relation
of agent i over the resulting set of action profiles ×j∈AL∗?
Clearly each agent prefers any action profile leading to a
consistent outcome over one which leads to inconsistency.
But what is his preference between different profiles leading
to consistent outcomes? One natural idea is that agents pre-
fer to remove less entrenched sentences (Gärdenfors 1988).
Given agent i is using removal function >i, his entrench-
ment ordering (over L∗) EE

i is given by

λEE
i χ iff >i (λ ∧ χ) 6` λ.

Thus χ is at least as entrenched as λ iff the removal of the
conjuction causes λ to be excluded. It expresses that agent i
finds it at least as easy to discard λ as χ.



Proposition 10 If >i is a basic removal function, and EE
i

is defined from >i as above then EE
i forms a standard en-

trenchment ordering in the sense of (Gärdenfors 1988). In
particular EE

i is a total preorder over L∗.

Given this, agent i’s preference relation -E
i over the

set ×j∈AL∗ is may be specified completely as follows.
Given any two action profiles (λj)j∈A and (χj)j∈A, we set
(λj)j∈A -E

i (χj)j∈A iff one of the following two conditions
hold:
either (i). (>j(λj))j∈A is inconsistent

or (ii).(>j(λj))j∈A and (>j(χj))j∈A are both
consistent and χj EE

i λj .

Since EE
i is a total preorder over L∗, it is easy to check -E

i
forms a total preorder over the set of all action profiles.

Definition 9 Given a removal profile (>i)i∈A, the strategic
game 〈(L∗)i∈A, (-E

i )i∈A〉 defined from (>i)i∈A as above
will be denoted by G((>i)i∈A).

Given all this, we are ready to define our next equilibrium
notion.

Definition 10 (φi)i∈A is an entrenchment equilibrium for
(>i)i∈A iff it is consistent and (φi)i∈A ≡ (>i(λ∗i ))i∈A for
some Nash equilibrium (λ∗i )i∈A of the game G((>i)i∈A).
Put more directly, an entenchment equilibrium is an outcome
(φi)i∈A which is consistent and for which no single agent
may deviate and remove a less entrenched sentence without
destroying this consistency.

This brings us to the following social removal property:

(FEEq) F((>i)i∈A) is an entrenchment equilibrium
for (>i)i∈A.

What is the relationship between entrenchment equilibria
and removal equilibria?

Proposition 11 Every removal equilibrium for (>i)i∈A is
an entrenchment equilibrium for (>i)i∈A. Furthermore if
all >i are hyperregular then every entrenchment equilibrium
for (>i)i∈A is a removal equilibrium for (>i)i∈A.

Proof. Let (φi)i∈A be a removal equilibrium and let i ∈
A. Then φi ≡ >i(¬

∧
j 6=i φj). We will show the profile

(¬
∧

j 6=i φj)i∈A is a Nash equilibrium for G((>i)i∈A). Sup-
pose χ CE

i ¬
∧

j 6=i φj , where CE
i is the strict part of i’s en-

trenchment relation EE
i . This means

>i(χ ∧ ¬
∧
j 6=i

φj) ` ¬
∧
j 6=i

φj . (3)

We must show (φ1, . . . ,>i(χ), . . . , φn) is inconsistent, i.e.,
>i(χ) ` ¬

∧
j 6=i φj . But since χEE

i ¬
∧

j 6=i φj we know

>i(χ ∧ ¬
∧
j 6=i

φj) 6` χ. (4)

From this and (>6) we get >i(χ) ` >i(χ∧¬
∧

j 6=i φj) and
so from this and (3) we obtain the desired conclusion.

For the second part, let >i be a hyperregular removal
function for each i ∈ A and suppose (φi)i∈A is consistent

and logically equivalent to (>i(λ∗i ))i∈A for some Nash
equilibrium (λ∗i )i∈A for G((>i)i∈A). We need to show
φi ≡ >i(¬

∧
j 6=i φi) for all i, i.e., >i(λ∗i ) ≡ >i(¬

∧
j 6=i φi).

First we show λ∗i and ¬
∧

j 6=i φi are equally entrenched
according to >i. That λ∗i EE

i ¬
∧

j 6=i φi holds since
(φ1, . . . ,>i(¬

∧
j 6=i φi), . . . , φn) is consistent (by (>1))

and so ¬
∧

j 6=i φi CE
i λ

∗
i would contradict that (λ∗i )i∈A is a

Nash equilibrium for G((>i)i∈A). That ¬
∧

j 6=i φi EE
i λ∗i

follows since we have >i(λ∗i ) 6` ¬
∧

j 6=i φi (since (φi)i∈A

is consistent) and so we may deduce ¬
∧

j 6=i φi EE
i λ

∗
i using

the following derived rule for basic removals:

(>B) If > (λ) 6` χ then > (λ ∧ χ) 6` χ.

Hence we have shown λ∗i and ¬
∧

j 6=i φi are equally en-
trenched according to >i, and the result now follows from
the fact that for hyperregular removals, removing equally
entrenched sentences yields logically equivalent results. �

Thus if all agents use hyperregular removal then the two
notions of equilibrium coincide. However, in general, not
every entrenchment equilibrium is a removal equilibrium,
since for example if (>i(⊥))i∈A is consistent then it is al-
ways an entrenchment equilibrium, because ⊥ is always
minimally entrenched for any basic removal function. How-
ever we have already seen that it might not be a removal
equilibrium.

Strong entrenchment equilibria
As we saw in Example 3, even in the hyperregular case, if
(>i(⊥))i∈A is consistent it might still not be the only en-
trenchment equilibrium. It might seem irrational for both
agents to give up p in this example, when it’s possible for
both to remove a less entrenched sentence (i.e.⊥) while pre-
serving consistency. This kind of counterintuitive result is
not restricted to entrenchment equilibria. In fact it is inher-
ent in the concept of Nash equilibrium itself. It has long
been recognised that the Nash equilibrium does not rule out
sub-optimal solutions in the case where agents have identi-
cal preferences over outcomes. This is illustrated by the fol-
lowing example, taken from (Osborne and Rubinstein 1994,
p16).

Example 5 Suppose two agents {1, 2} who wish to go to a
concert together, but must choose between going to a Mozart
(Mo) concert or a Mahler (Ma) concert. Thus the set of ac-
tions for both agents is A = {Mo,Ma}. We assume both
agents have identical preferences over the four possible ac-
tion profiles. Firstly, the agents want to reach agreement,
so the two profiles in which they choose different actions
are the least preferred. Moreover, both agents prefer to see
the Mozart concert. Thus the preference relation - of both
agents is specified completely by

(Mo,Ma) ∼ (Ma,Mo) ≺ (Ma,Ma) ≺ (Mo,Mo).

(Just for this example we are using ∼ and ≺ to denote
the symmetric closure and strict part of - respectively.)
In this game there are two Nash equilibria (Ma,Ma) and
(Mo,Mo). Even though both agents have a mutual interest



in reaching (Mo,Mo), the Nash equilibrium does not rule
out the inferior outcome (Ma,Ma).

This anomaly led several authors to propose refined equi-
libria concepts for strategic games. One such refinement,
the strong Nash equilibrium (Aumann 1959), says roughly
that no set – not just singletons as with Nash – of agents
can make a joint change in strategy which leads to a more
preferred outcome for all agents in that set.

Definition 11 A strong Nash equilibrium of a strategic
game 〈(Ai)i∈A, (-i)i∈A〉 is an action profile (a∗i )i∈A such
that, for any X ⊆ A, and each tuple (ai)i∈X , there exists
j ∈ X such that (ai)i∈A -j (a∗i )i∈A, where ai = a∗i for
i 6∈ X .

This leads to the corresponding refinement for entrench-
ment equilibria.

Definition 12 (φi)i∈A is a strong entrenchment equilibrium
for (>i)i∈A iff it is consistent and (φi)i∈A ≡ (>i(λ∗i ))i∈A
for some strong Nash equilibrium (λ∗i )i∈A of the game
G((>i)i∈A).

The following property thus strengthens (FEEq):

(FEEq+) F((>i)i∈A) is a strong entrenchment
equilibrium for (>i)i∈A.

In Example 3 the only strong entrenchment equilibrium is
(p)i∈A. For hyperregular removal profiles, it can be shown
function F1 defined earlier satisfies (FEEq+), but F2 does
not. Thus strong entrenchment equilibria always exist for
hyperregular removal profiles. However at the time of writ-
ing it is an open problem whether they are guaranteed to
exist for general basic removal profiles. It would also be
interesting to try and find a necessary and sufficient condi-
tion for a removal equilibrium to be a strong entrenchment
equilibrium (even in the hyperregular case).

Equilibria as maxiconsistent sets
The simplest kind of removal function is what might be
termed drastic removal, in which the result of removing λ
is >(⊥) if λ is not entailed by the initial belief set, or > if
it is entailed. That is, an agent either leaves his belief set
unchanged, or throws out all beliefs. Drastic removals cor-
respond to the severe withdrawal functions determined by
single-element logical chains.

If all agents use drastic removal, then re-
moval/entrenchment equilibria reduce to taking maximal
consistent sets of agents. X ⊆ A is maximally consistent
iff (i)

∧
i∈X >i(⊥) is consistent, and (ii)

∧
i∈Y >i(⊥) is

inconsistent for all X ⊂ Y ⊆ A.

Proposition 12 Suppose all >i are drastic removal func-
tions. Then (φi)i∈A is a removal (or entrenchment) equi-
librium for (>i)i∈A iff {i | φi ≡ >i(⊥)} is a maximally
consistent subset of A.

Thus we see that the main notions of equilibria studied in
this paper (removal and entrenchment) can be seen as gen-
eralisations of the idea of taking maximal consistent sets.

Related work
While this paper is, to our knowledge, the first attempt to de-
fine explicit notions of equilibria in a belief merging setting,
a proposal that is similar in spirit has been made in the con-
text of negotiation. In a series of papers, Zhang et al. (2004)
and Meyer et al. (2004b; 2004a) considered the problem of
negotiation from a belief change perspective. They consider
the case of negotiation involving only two agents, but make
it clear that the real interest is in a setting involving a finite
number n of agents. The initial demands of agents are repre-
sented as (logically closed) belief sets, and are compared to
the beliefs of agents. Negotiation is then described as a pro-
cess in which agents strike a deal by modifying their initial
demands to obtain new belief sets, say φ1 and φ2. The out-
come of the process of negotiation is the conjunction φ1∧φ2

of the modified belief sets. Negotiation in this sense is thus
closely related to belief merging and hence, indirectly, to so-
cial belief removal.

The basic assumptions in the series of papers differ from
those made in this paper. Zhang et al. (2004) define the mod-
ified belief sets in terms of belief revision, and in particular,
basic AGM revision (i.e. revision operators satisfying the
first six AGM revision postulates (Alchourrón, Gärdenfors,
and Makinson 1985)). Meyer et al. (2004a) consider mod-
ified belief sets in terms of both contraction and revision,
but assuming basic AGM revision and contraction. This was
also extended to full AGM contraction and revision (Meyer
et al. 2004b).

Despite these differences regarding basic assumptions,
there are some interesting similarities between their work
and the notion of a removal equilibrium. Zhang et al. (2004)
characterise the modified belief sets φ1 and φ2 in terms of
the following fixed-point definition, using belief revision
functions +1 and +2 for agents 1 and 2 respectively:

(FP) φ1 ∧ φ2 ≡ +1(φ2) ∨+2(φ1)
That is, the outcome of a deal (φ1 ∧ φ2) is equivalent to the
disjunction of the result of agent 1 revising with the revised
demands of agent 2, and the result of agent 2 revising with
the revised demands of agent 1. To compare this with our
results, observe firstly that for the case of two agents, the
definition of a removal equilibrium reduces to the following:

Definition 13 (φi)i∈{1,2} is a removal equilibrium for
(>i)i∈{1,2} iff it is consistent, φ1 ≡ >1(¬φ2) and φ2 ≡
>2(¬φ1).
From Defn. 13 it follows immediately that

φ1 ∧ φ2 ≡ >1(¬φ2) ∧>2(¬φ1)
which can almost be seen as the dual of (FP): revision func-
tions are replaced by removal functions, the input to the
functions are negated, and we take the conjunction of the
result instead of the disjunction.

In fact, there is an even closer link between our work
and theirs. For each i = 1, 2 let +i be the revision func-
tion defined from >i using the Levi Identity, i.e., +i(φ) =
>i(¬φ) ∧ φ. Now, from Defn. 13 it follows that φ1 ≡
>1(¬φ2), and therefore that

φ1 ∧ φ2 ≡ >1(¬φ2) ∧ φ2 ≡ +1(φ2).



Switching the roles of φ1 and φ2 we also get

φ1 ∧ φ2 ≡ >2(¬φ1) ∧ φ1 ≡ +2(φ1).

From this it follows that

φ1 ∧ φ2 ≡ +1(φ2) ∨+2(φ1).

In other words, assuming the same class of removal func-
tions, and assuming the Levi Identity, the fixed-point con-
struction (FP) actually follows from Defn. 13.

Conclusion
We have defined several notions of equilibrium in the frame-
work of social removal functions, formulated purely in the
language of belief removal operators. Assuming all agents
use basic removal functions to remove their own beliefs, we
proved our equilibria are always guaranteed to exist. We
gave several examples to illustrate these notions, and we
showed that they generalise in some sense the idea of re-
solving inconsistency by taking maximal consistent subsets
of agents.

For future work, we want to generalise our results to han-
dle social removal under integrity constraints (Konieczny
and Pino Pérez 2002). An IC social removal function is a
function taking as arguments a removal profile and a con-
sistent sentence Ψ, which returns a belief profile which is
consistent with Ψ. The equilibrium notions described in this
paper should extend to this setting. For example an IC re-
moval equilibrium could be defined to be any belief profile
(φi)i∈A for which φi ≡ >i(¬(Ψ ∧

∧
j 6=i φj)) for all i.

Social belief removal functions have obvious similarities
to social choice rules (Arrow, Sen, and Suzumura 2002). A
social choice rule takes as input a profile of total preorders
over the set of alternatives together with a given subset A
of the alternatives, and outputs a subset of A – the chosen
elements of A for the group. By conjoining the elements
of the output of a social belief removal function we obtain
an output of the same type as with social choice rules, but
the input of a social belief removal function can be viewed
as richer than that for social choice, since a basic removal
function corresponds to a total preorder ≤ plus a reflex-
ive sub-relation �. It would be interesting to explore any
(im)possibility theorems for social removal functions.
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