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Abstract. We address dynamics in abstract argumentation using a log-
ical theory where an agent’s belief state consists of an argumentation
framework (AF, for short) and a constraint that encodes the outcome
the agent believes the AF should have. Dynamics enters in two ways: (1)
the constraint is strengthened upon learning that the AF should have a
certain outcome and (2) the AF is expanded upon learning about new
arguments/attacks. A problem faced in this setting is that a constraint
may be inconsistent with the AF’s outcome. We discuss two ways to ad-
dress this problem: First, it is still possible to form consistent fallback
beliefs, i.e., beliefs that are most plausible given the agent’s AF and con-
straint. Second, we show that it is always possible to find AF expansions
to restore consistency. Our work combines various individual approaches
in the literature on argumentation dynamics in a general setting.
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1 Introduction

In Dung-style argumentation [1] the argumentation framework (AF for short)
is usually assumed to be static. There are, however, many scenarios where ar-
gumentation is a dynamic process: Agents may learn that an AF must have a
certain outcome and may learn about new arguments/attacks. These are two
basic issues that a theory about argumentation dynamics should address.

Some of these aspects have received attention in recent years. For example,
the so called enforcing problem [2] is concerned with the question of whether
and how an AF can be modified to make a certain set of arguments accepted.
Other work studies the impact on the outcome of an AF when a new argument
comes into play [3] or studies the issue of reasoning with incomplete AFs [4].

We address the problem by answering the following research questions: How
can we model an agent’s belief about the outcome of an AF? and How can we
characterize the effects of an agent learning that the AF should have a certain
outcome, or learning about new arguments/attacks?
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The basis of our approach is a logical labeling language, interpreted by label-
ings that assign to each argument a label indicating that it is accepted, rejected
or undecided [5]. Formulas in this language are statements about the acceptance
of the arguments of an AF. This allows us to reason about the outcome of an
AF in terms of beliefs, rather than extensions or labelings.

We take an agent’s belief state to consist of an AF and a formula encoding
a constraint on the outcome of the AF. The constraint is strengthened upon
learning that the AF should have a certain outcome. Furthermore, the agent’s
AF is expanded upon learning about new arguments and attacks. These two
operations are modeled by a constraint expansion and AF expansion operator.

A problem faced in this setting is that the constraint on the AF’s outcome
may be inconsistent with its actual outcome, preventing the agent from forming
consistent beliefs. We call such a state incoherent. We appeal to the intuition
that an AF provides the agent with the ability to argue for the plausibility of
the beliefs that it induces. Incoherence thus means that the agent is unable to
argue for the plausibility of her beliefs using the AF.

We show that there are two ways to deal with this. First, we show that, given
an incoherent belief state, it is always possible to come up with an expansion
of the AF that restores coherence. Such AF expansions can be thought of as
providing the missing arguments necessary to argue for her beliefs. Second, we
show that it is always possible to form consistent fallback beliefs, which represent
the “most rational” outcome of the agent’s AF, given the constraint. Finally, we
present an answer-set program for computing fallback belief, i.e., for determining
whether or not some formula is a fallback belief in a particular belief state.

Our theory about argumentation dynamics combines several individual ap-
proaches in the literature in a general setting. For example, the issue of restoring
coherence is related to the enforcing problem [2]; other ways to characterize the
effect of an AF expansion have been studied in [3] and our notion of fallback
belief is related to principles developed in [4].

A brief outline of this paper: In section 2 we introduce our labeling logic,
together with the necessary basics of argumentation theory. Next, we present
our belief state model and associated expansion operators in section 3. We then
discuss in sections 4 and 5 how to deal with incoherent belief states, i.e., by
restoring coherence via AF expansion and by using fallback belief. In section 6
we present an ASP encoding for computing fallback belief. Having focused in
these sections on the complete semantics, we turn in section 7 to a discussion of
a number of additional semantics. In section 8 we discuss related work and we
conclude and discuss future work in section 9.

2 Preliminaries

We start out with some preliminaries concerning Dung-style abstract argumen-
tation theory [1]. According to this theory, argumentation can be modeled using
an argumentation framework, which captures two basic notions, namely argu-
ments and attacks among arguments. We limit ourselves to the abstract setting,
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meaning that we do not specify the content of arguments in a formal way. Nev-
ertheless, arguments should be understood to consist of a claim and a reason,
i.e., some consideration that counts in favor of believing the claim to be true,
while attacks among arguments stem from conflicts between different claims and
reasons. We assume in this paper that argumentation frameworks are finite.

Definition 1. An argumentation framework (AF for short) is a pair (A,R)
where A is a finite set of arguments and R ⊆ A×A is an attack relation.

Given an AF (A,R) we say that x is an attacker of y, whenever (x, y) ∈ R.
The outcome of an AF consists of possible points of view on the acceptability of
its arguments. In the literature, these points of view are represented either by
sets of acceptable arguments, called extensions or by argument labelings, which
are functions assigning to each argument a label in, out or undecided, indicating
that the argument is respectively accepted, rejected or neither [5]. The two repre-
sentations are essentially reformulations of the same idea as they can be mapped
1-to-1 such that extensions correspond to sets of in-labeled arguments [5]. For
the current purpose we choose to adopt the labeling-based approach.

Definition 2. A labeling of an AF F = (A,R) is a function L : A→ {I,O, U}.
We denote by I(L), O(L) and U(L) the set of all arguments x ∈ A such that
L(x) = I, L(x) = O or L(x) = U , respectively, and by MF the set of all
labelings of F .

Various conditions are used to single out labelings that represent rational
points of view. The following gives rise to what is called the complete semantics:

Definition 3. Let F = (A,R) be an AF and L ∈ MF a labeling. We say that
L is complete iff for each x ∈ A it holds that:
– L(x) = I iff ∀y ∈ A s.t. (y, x) ∈ R, L(y) = O,
– L(x) = O iff ∃y ∈ A s.t. (y, x) ∈ R and L(y) = I,

Thus, under the complete semantics, the outcome of an AF consists of la-
belings in which an argument is in iff its attackers are out and is out iff it has
an attacker that is in. Many of the other semantics proposed in the literature,
such as the grounded, preferred and stable semantics [1] are based on selecting
particular subsets of the set of complete labelings:

Definition 4. Let L be a complete labeling of the AF F . L is called:
– grounded iff there is no complete labeling L′ of F s.t. I(L′) ⊂ I(L),
– preferred iff there is no complete labeling L′ of F s.t. I(L) ⊂ I(L′),
– stable iff U(L) = ∅.

We focus on the complete semantics but briefly discuss the others in section 7.

Example 1. Consider the AF shown in figure 1, which has three complete label-
ings, namely IOOI, OIOI and UUUU. (We denote labelings by strings of the form
ABC . . . where A, B, C, . . . are the labels of the arguments a, b, c, . . .)
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c d

Fig. 1. An argumentation framework

A flexible way to reason about the outcome of an AF is by using a logical
labeling language. Formulas in this language assign a label to an argument or
are boolean combinations of such assignments. The language, given an AF F =
(A,R), is denoted by LF and is generated by the following BNF, where x ∈ A:

φ := inx | outx | ux | ¬φ | φ ∨ φ | > | ⊥.

We also use the connectives ∧,→,↔, defined as usual in terms of ¬ and ∨.
Next, we define a satisfaction relation between labelings and formulas:

Definition 5. Let F be an AF. The satisfaction relation |=F⊆ MF × LF is
defined by:
– L |=F inx iff L(x) = I,
– L |=F outx iff L(x) = O,
– L |=F ux iff L(x) = U ,
– L |=F φ ∨ ψ iff L |=F φ or L |=F ψ,
– L |=F ¬φ iff L 6|=F φ,
– L |=F > and L 6|=F ⊥.

A model of a formula φ is a labeling L ∈MF such that L |=F φ. We denote by
[φ]F the set of labelings satisfying φ, defined by [φ]F = {L ∈ MF | L |=F φ}.
We write φ |=F ψ iff [φ]F ⊆ [ψ]F and φ ≡F ψ iff [φ]F = [ψ]F .

Whenever the AF we talk about is clear from the context, we drop the sub-
script F from |=F , [. . . ]F and ≡F .

Using this labeling language, we can reason about the outcome of an AF by
talking about beliefs induced by the AF. These beliefs can be represented by a
formula φ such that [φ] is exactly the set of complete labelings of F . It is worth
noting that φ can be formulated in a straightforward way:

Proposition 1. Let F = (A,R) be an AF. It holds that a labeling L is a com-
plete labeling of F iff L is a model of the formula

∧x∈A((inx ↔ (∧(y,x)∈Routy)) ∧ (outx ↔ (∨(y,x)∈Riny))).

Example 2. Among the beliefs induced by AF in figure 1 are ¬outd and (ina ∨
inb)↔ ind and ¬(ina ∧ inb).

Finally, conflict-freeness is considered to be a necessary (but not sufficient)
condition for any labeling to be considered rational. We will make use of the
following definition:
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Definition 6. Let F = (A,R) be an AF. A labeling L of F is said to be conflict-
free iff L is a model of the formula

∧x∈A(inx → ((∧(y,x)∈Routy) ∧ (∧(x,y)∈Routy))).

We denote this formula by CfF . We say that φ is is conflict-free iff CfF 6|= ¬φ.

Thus, in a conflict-free labeling any neighbor of an in-labeled argument is
out. Note that we deviate from the usual definition (see e.g. [6]), which allows
neighbors of an in-labeled argument to be undecided. The reason is that, given
our definition, conflict-freeness can be seen to generalize completeness in a dy-
namic setting, in the sense that a conflict-free labeling of an AF is always (part
of) a complete labeling of some expansion of the AF. The benefit of this will
become clear in the following sections.

Example 3. Some examples of conflict-free labelings of the AF in figure 1 are
IOOO, UUOI and OOOO. Examples of labelings that are not are IIOO and UUIO.

3 Belief states

On the one hand, AFs interpreted under the complete semantics induce beliefs
about the status of arguments (and consequently about argument’s claims and
reasons) that are rational in the sense that the arguments and attacks in the AF
can be used to argue for the plausibility of these beliefs. For example, given the
AF ({b, a}, {(b, a)}), the belief outa can, informally speaking, be argued for by
pointing out that a is attacked by b which, in turn, is not attacked and should
thus be accepted. Furthermore, these beliefs are defeasible, because learning
about new arguments and attacks may cause old beliefs to be retracted.

On the other hand, an agent may learn or come to desire some claim to be
true or false, without being aware of arguments to argue for the plausibility of
it. This bears on the outcome that the AF should have, according to the agent.
To model scenarios like these, we define an agent’s belief state to consist not
only of an AF, but also a constraint that the agent puts on its outcome.

Definition 7. A belief state is a pair S = (F,K), where F = (A,R) is an AF
and K ∈ LF the agent’s constraint. We define K(S) by K(S) = K and Bel(S)
by [Bel(S)] = {L ∈ [K] | L is a complete labeling of F}. We say that the agent
believes ψ iff Bel(S) |= ψ and that S is coherent iff Bel(S) 6|= ⊥.

Thus, the belief Bel(S) of an agent is formed by the outcome of the AF in
conjunction with the constraint. Intuitively, the plausibility of the agent’s belief
can be argued for only if it is consistent, i.e., only if the belief state is coherent.
An incoherent state is thus a state in which the agent is prevented from forming
beliefs that can be shown to be plausible via the AF.

We turn again to incoherence in the following section. We first define two
expansion operators: one that strengthens the agent’s constraint and one that
expands the AF. The constraint expansion operator takes as input a belief state
and a formula φ representing a constraint that is to be incorporated into the
new belief state. It is defined as follows.
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Definition 8. Let F be an AF, S = (F,K) a belief state and φ ∈ LF . The
constraint expansion of S by φ, denoted S ⊕ φ is defined by S ⊕ φ = (F,K ∧ φ).

Example 4. Let S1 = (F,>) where F is the AF shown in figure 1. We do not
have Bel(S1) |= ind. That is, the agent does not believe that d is in. Consider
the constraint expansion S2 = S1 ⊕ (ina ∨ inb). Now we have Bel(S2) |= ind.
That is, after learning that either a or b is in, the agent believes that d is in.

As to expanding the AF, we make two assumptions: First, we assume that
arguments and attacks are not “forgotten”. This means that elements can be
added to an AF but not removed. Second, we assume that attacks between
arguments are determined once the arguments are known. This means that no
new attacks can be added between arguments already present in the agent’s AF.
Such expansions are called normal expansions by Baumann and Brewka [2]. We
call a set of new arguments and attacks an AF update:

Definition 9. Let F = (A,R) be an AF. An AF update for F is a pair F ∗ =
(A∗, R∗) where A∗ is a set of added arguments, such that A ∩ A∗ = ∅ and
R∗ ⊆ ((A ∪A∗)× (A ∪A∗)) \ (A×A) a set of added attacks.

The AF expansion operator is defined as follows:

Definition 10. Let F = (A,R) be an AF, S = (F,K) a belief state and F ∗ =
(A∗, R∗) an AF update for F . The AF expansion of S by F ∗, denoted by S⊗F ∗
is defined by S ⊗ F ∗ = ((A ∪A∗, R ∪R∗),K).

Example 5. Consider the belief state S1 = (F, outa ∨ outb) where F is the AF
shown in figure 1. Note that we do not have, e.g., Bel(S1) |= inb. Now consider
the AF expansion S2 = (S1 ⊗ ({e}, {(e, a)}). Now we do have Bel(S2) |= inb.

The two operators just defined allow us to study our belief state model in a
dynamic setting, where an agent’s belief state changes after new constraints on
the AF’s outcome are acquired or after adding new arguments and attacks.

4 Restoring coherence through AF expansion

In the previous section we presented a belief state model which includes, besides
the agent’s AF, a constraint on its outcome. We also explained that incoherence
(i.e., the belief induced by the AF being inconsistent with the constraint) pre-
vents the agent from forming beliefs that can be shown to be plausible via the
agent’s AF. The question is then: can the AF be expanded in such a way that
the beliefs induced by it are consistent with the agent’s constraints? In other
words: can we restore coherence by expanding the AF in some way? Consider
the following example.

Example 6. Let S1 = (F,>) where F is the AF shown in figure 1. Suppose the
agent learns that both a and b are out. The resulting state S2 = S1⊕(outa∧outb)
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1
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Fig. 2. Four argumentation framework updates

is incoherent, i.e., we have Bel(S2) |= ⊥. Now suppose the agent learns about
arguments e and f , attacking a and b. The corresponding AF update is shown as
F ∗2 in figure 2. The resulting state is S3 = S2⊗({e, f}, {(e, a), (f, b)}). Coherence
is now restored: Bel(S3) 6|= ⊥. In S3 the agent believes, e.g., that c is in and d is
out: Bel(S3) |= inc ∧ outd. Notice that F ∗4 , too, restores coherence in state S2,
whereas F ∗1 and F ∗3 do not.

This example shows that it is indeed possible to expand an AF such that
coherence is restored. Note, also, that the AF updates F ∗2 and F ∗4 can be under-
stood to provide the “missing explanation” for the agent’s constraint outa∧outb.
That is, a and b are out because there are arguments attacking (among possibly
other arguments) a and b. We can show that, as long as the agent’s constraint
is conflict-free, there always exists some AF expansion that restores coherence.
That the agent’s constraint is required to be conflict-free follows from the fact
that attacks between existing arguments cannot be removed. Proofs are omitted
due to space constraints.

Theorem 1. Let (F,K) be an incoherent belief state where K is conflict-free.
There exists an AF update F ∗ for F such that (F,K)⊗ F ∗ is coherent.

This result essentially says that incoherence of a belief state can be under-
stood to mean that the agent’s AF is incomplete and needs to be expanded
with additional arguments and attacks. A related result, called the conservative
strong enforcing result, was presented by Baumann and Brewka [2]. However,
this result deals only with the possibility of making some set of arguments ac-
cepted. By contrast, we deal with arbitrary formulas expressible in the logical
labeling language.

5 Fallback belief

In example 6, the agent learns that a and b are out, resulting in the belief
state becoming incoherent and beliefs becoming inconsistent. Nevertheless, it is
still possible to form reasonable, consistent beliefs given this constraint, even
without performing a coherence restoring AF expansion. To see what we mean,
it is enough to just look at the AF in figure 1 and see that, once a and b are out,
c should be in and d should be out. However, there are no complete labelings
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satisfying these assignments of labels. Thus to form such beliefs, which we call
fallback beliefs, we must adopt a different method.

The starting point is to define a rationality order over conflict-free labelings,
used to determine their relative rationality. Consider an assignment, to each
AF F , of a total pre-order (i.e., a complete, transitive and reflexive order) �F

over conflict-free labelings of F . Given a set M ⊆ [CfF ] we define min�F
(M)

by min�F
(M) = {L ∈ M | ∀L′ ∈ M,L �F L′}. Following terminology used

in belief revision, we call such an assignment faithful if the minimal labelings
according to �F are exactly the complete labelings of F .

Definition 11. A faithful assignment assigns to each AF F a total pre-order
�F⊆ [CfF ] × [CfF ] s.t. L ∈ min�F

([CfF ]) iff L is a complete labeling of F . If
L �F L′, we say that L is at least as rational as L′.

In an incoherent state, i.e., when all fully rational labelings of the AF F
are ruled out, the agent can fall back on the remaining labelings that are most
rational according to the ordering �F . These labelings can be used to form
fallback beliefs, the idea being that they represent the best outcome of the AF
given the agent’s constraint. Given a belief state S, we denote the fallback belief
in S by Bel∗(S). The type of belief we end up with can be characterized by an
appropriate adaptation of the well known KM postulates [7]:

Theorem 2. The following are equivalent:

1. There exists a faithful assignment mapping each F to a total pre-order �F

such that for each K, [Bel∗((F,K))] = min�F
([K] ∩ [CfF ]).

2. For each S = (F,K), Bel∗ satisfies:
P1: Bel∗(S) |= K(S) ∧ CfF .
P2: If S is coherent then Bel∗(S) ≡ Bel(S).
P3: If K(S) is conflict-free then Bel∗(S) is conflict-free.
P4: If F1 = F2 and K1 ≡ K2 then Bel∗((F1,K1)) ≡ Bel∗((F2,K2)).
P5: Bel∗(S) ∧ ψ |= Bel∗(S ⊕ ψ).
P6: If Bel∗(S) ∧ ψ is conflict-free then Bel∗(S ⊕ ψ) |= Bel∗(S) ∧ ψ.

Thus, if we define Bel∗ by [Bel∗((F,K))] = min�F
([K]∩ [CfF ]) then fallback

belief behaves like the one-shot revision, by the constraint K, of the outcome of
F under the complete semantics. The postulates in proposition 2 now embody
conditions of minimal change w.r.t. the fully rational outcome of the AF, rather
than an arbitrary KB. The original postulates were discussed by Katsuno and
Mendelzon [7], who built on the AGM approach to belief revision [8]. Here we
content ourselves with pointing out how our postulates differ from the original
ones. First of all, P1, P2, P3 and P6 are changed to account for the fact that only
conflict-free labelings are considered possible. Second, in P5 and P6 conjunction
is substituted with ⊕, Finally, P4 requires the AFs (and thus orderings) in the
two belief states to be equivalent, as well as the constraint.

The question we need to answer now is: when is one conflict-free labeling
of an AF F to be more rational than another? That is, how should �F order
arbitrary conflict-free labelings of F? A natural way to do this is by looking at
the arguments that are illegally labeled [6]. This is defined as follows:
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Definition 12. Let F = (A,R) be an AF and L ∈ MF a labeling of F . An
argument x ∈ A is said to be:
– Illegally in iff L(x) = I and ∃y ∈ A, (y, x) ∈ R and L(y) 6= O,
– Illegally out iff L(x) = O and @y ∈ A, (y, x) ∈ R such that L(y) = I,
– Illegally undecided iff L(x) = U and ∃y ∈ A, (y, x) ∈ R and L(y) = I or

@y ∈ A, (y, x) ∈ R such that L(y) = U .
We denote by ZI

F (L), ZO
F (L) and ZU

F (L) the sets of arguments that are, respec-
tively, illegally in, out and undecided in L.

Intuitively, an illegally labeled argument indicates a local violation of the
condition imposed on the argument’s label according to the complete semantics.
It can be checked, for example, that a labeling L is a complete labeling iff it
has no arguments illegally labeled. It can also be checked that, in a conflict-free
labeling, arguments are never illegally in. Thus in judging the relative rationality
of a conflict-free labeling L, we only have to look at the sets ZO

F (L) and ZU
F (L).

What, exactly, do the sets ZO
F (L) and ZU

F (L) tell us about how rational L
is? To answer this we have to look at what it takes to turn L into a complete
labeling. We say that an AF update that turns L into (part of) a complete
labeling of the (expanded) AF is an AF update that completes L. Formally:

Definition 13. Let F ∗ = (A∗, R∗) be an AF update for F = (A,R) and L a
conflict-free labeling of F . We say that F ∗ completes L iff there is a complete
labeling L′ of the AF (A∪A∗, R ∪R∗) such that (L′ ↓ A) = L, where (L ↓ A) is
a function defined by (L ↓ A)(x) = L(x), for all x ∈ A.

As a measure for the “impact” of an AF update, Baumann looked at the
number of added attacks [9]. In our setting it is more appropriate to look at the
number of arguments in the existing AF that are attacked by the AF update.
We call this this the attack degree of the AF update.

Definition 14. Let F ∗ = (A∗, R∗) be an AF update for F = (A,R). We de-
note by δF (F ∗) the attack degree of F ∗, defined by δF (F ∗) = |{x ∈ A | ∃y ∈
A∗, (y, x) ∈ R∗}|.

The key is that the sets ZO
F (L) and ZU

F (L) inform us about the minimal
impact it would take to complete L, or to turn L into a fully rational point of
view. That is, it informs us about the minimal attack degree of an AF update
that completes L:

Proposition 2. Let L be a conflict-free labeling of an AF F . If F ∗ completes L
then δF (F ∗) ≥ |ZO

F (L) ∪ ZU
F (L)|.

We use the cardinality of the sets ZO
F (L) and ZU

F (L) as the criterion to
define the rationality order �F , making the assumption that the agent believes
that conflict-free labelings that require less impact to be turned into a complete
labeling are more rational. We now define a faithful assignment as follows: Let
F be an AF and L,L′ ∈ [CfF ],

L �F L′ iff |ZO
F (L) ∪ ZU

F (L)| ≤ |ZO
F (L′) ∪ ZU

F (L′)|
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Now, the outcome of the AF according to the agent’s fallback belief is the
outcome that would hold if some minimal impact, coherence restoring AF update
would be performed.

Example 7. The table below represents �F for the AF F shown in figure 1.

0 1 2 3 4
OIOI OIOO UUUO OOIO UUOO OOOI OUUO OOOO OUOU OUOO

UUUU OIOU IOOO OUUU UUOU OOUU UOOI OOOU UOOO

IOOI UUOI IOOU UOUU OUOI UOUO OOUO UOOU

The table groups labelings by to the number of arguments illegally labeled.
These arguments are underlined and the numbers are shown in the column head-
ers. This determines the ordering �F as follows: L ≺F L′ iff L is in another
column to the left of L′. We have the following fallback beliefs:
– Bel∗(F, outa ∧ outb) |= inc (if a and b are out then c is in).
– Bel∗(F, inc) |= outa ∧ outb (if c is in then a and b must be out).
– Bel∗(F, outd) |= ¬(ina ∧ inb) (even if d is out, a and b cannot both be in).
– Bel∗(F, outd) |= ua → uc (even if d is out, if a is undecided then so is c).

Note that none of these inferences can be made by looking only at the complete
labelings of F .

As the following theorem states more formally, and as we pointed out above,
fallback belief is formed by assuming the most rational outcome of an AF in an
incoherent state to be the outcome that would hold after a coherence restoring
AF update with minimal impact. That is, if coherence is restored using an AF
update with a minimal attack degree, then the agent’s regular belief in the
updated state includes the agent’s fallback belief in the old state.

Theorem 3. Let S be an incoherent belief state and F ∗1 a minimal coherence
restoring update (i.e., S ⊗ F ∗1 is coherent and there is no F ∗2 such that S ⊗ F ∗2
is coherent and δF (F ∗2 ) < δF (F ∗1 )). It holds that Bel(S ⊗ F ∗1 ) |= Bel∗(S).

Example 8. Let S = (F, outc) be a belief state with F = ({a, b, c, d, e}, {(a, b),
(b, c), (d, e), (e, c)}). We have [Bel∗(S)] = {IOOIO, OIOIO, IOOOI}. Three minimal
coherence restoring AF updates are: F ∗1 = ({f}, {(f, c)}), F ∗2 = ({f}, {(f, a)})
and F ∗3 = ({f}, {(f, d)}). We have that Bel(S⊗F ∗n) = ψ, where [ψ] = {IOOIOI}
if n = 1; [ψ] = {OIOIO}, if n = 2 and [ψ] = {IOOOII}, if n = 3. It can be checked
that, for all n ∈ {1, 2, 3}, Bel(S ⊗ F ∗n) |= φ and thus Bel(S ⊗ F ∗n) |= Bel∗(S).

6 Computing fallback beliefs with ASP

Answer-set programming has proven to be a useful mechanism to compute ex-
tensions of AFs under various semantics [10–12]. The idea is to encode both the
AF and a so called encoding of the semantics in a single program of which the
stable models correspond to the extensions of the AF.

In this section we show that the problem of deciding whether a formula φ is
a fallback belief in a state (F,K) can be solved, too, using an answer-set pro-
gram. The encoding, shown in listing 6, turns out to be surprisingly simple, and
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works as follows. The AF is assumed to be encoded (line 1) using the predi-
cates arg/1 and att/2. For example, the AF of figure 1 is encoded by the facts
arg(a), arg(b), arg(c), arg(d), att(a,b), att(a,c), att(b,a), att(b,c)

and att(c,d). The choice rule on line 2 ensures that each argument x ∈ A gets
one of three labels, expressed by the predicates in/1, out/1 and undec/1. On
lines 3 and 4 conflict-freeness is ensured. Given just these constraints, stable
models correspond to conflict-free labelings of F . Lines 5-10 are used to estab-
lish whether an argument x ∈ A is illegally labeled, expressed by the predicate
illegal(x). The cardinality of this predicate is minimized on line 12. Finally,
the agent’s constraint is assumed to be encoded (line 11) using statements re-
stricting the possible labels assigned to arguments. For example, the constraint
outa ∨ outb is encoded by the choice rule 1 {out(a), out(b)} 2, and the con-
straint outa ∧ outb by the two facts out(a) and out(b). The (optimal) stable
models now correspond to maximally rational conflict-free labelings that satisfy
the constraint.

1 % <-- Framework encoding here -->

2 1 { in(X), out(X), undec(X) } 1 :- arg(X).

3 out(Y) :- att(X, Y), in(X).

4 out(X) :- att(X, Y), in(Y).

5 legally_out(X) :- out(X), att(Y, X), in(Y).

6 legally_undec(X) :- undec(X), att(Y, X), undec(Y).

7 illegally_out(X) :- out(X), not legally_out(X).

8 illegally_undec(X) :- undec(X), not legally_undec(X).

9 illegal(X) :- illegally_out(X).

10 illegal(X) :- illegally_undec(X).

11 % <-- Constraint encoding here -->

12 #minimize { illegal(X) }.

Program 1: An answer set program to compute fallback belief

The program is compatible with the Gringo grounder (version 3.0.5) and
Clasp answer set solver (version 2.1.2) [13]. The optimal stable models can be
obtained by running the solver with the option --opt-all. The final step of the
complete procedure amounts to checking whether the formula φ is true in every
optimal stable model. Alternatively, the set of stable models of the program
can be converted into a formula in disjunctive normal form that represents the
agent’s whole fallback belief.

7 Additional semantics

We have focused in this paper on the complete semantics. Some of the no-
tions we introduced can be adapted to other semantics in a straightforward
way. For example, we can define a family of types of s-belief for a semantics
s ∈ {Co, St, Pr,Gr} (for Complete, Stable, Preferred, Grounded) as follows:
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Definition 15. Let F = (A,R) be an AF, S = (F,K) be the agent’s belief
state and s ∈ {Co, St, Pr,Gr}. We define Bels(S) by [Bels(S)] = {L ∈ [K] |
L is an s-labeling of F}. We say that the agent s-believes φ iff Bels(S) |= φ.

It can be checked that we have BelGr(S) |= BelCo(S) and BelSt(S) |=
BelPr(S) |= BelCo(S). This follows directly from the fact that grounded la-
belings are also complete, stable also preferred, and so on. Now consider e.g. the
following notion of s-coherence:

Definition 16. Let S be a belief state and s ∈ {Co, St, Pr,Gr}. We say that S
is s-coherent iff Bels(S) 6|= ⊥.

Given the notions of s-belief and s-coherence we can generalize theorem 1:

Theorem 4. Let s ∈ {Co, St, Pr,Gr} and let (F,K) be an s-incoherent belief
state where K is conflict-free. There exists an AF update F ∗ for F such that
(F,K)⊗ F ∗ is s-coherent.

Fallback belief, however, is less straightforward to adapt, as the corresponding
rationality orderings would have to combine different criteria, i.e. minimizing/-
maximizing in-labeled arguments w.r.t. set-inclusion and minimizing illegally
labeled arguments, meaning we have to deal with partial pre-orders.

8 Related work

In this section we give a short overview of related work. We already mentioned
the relation of our work with the enforcing problem [2]. The authors present
a result stating that every conflict-free extension can be enforced (i.e., made
accepted under a semantics) with an appropriate AF expansion. In our setting
we consider more general types of enforcing, not limited only to acceptance of
sets of arguments. Our theorem 4 thus strengthens their possibility result.

Next, different ways to characterize the impact of AF expansions have been
studied. This includes minimality w.r.t. the number of added attacks, studied
in the context of the enforcing problem [9]. Further criteria were defined in the
study of the impact on the outcome of an AF of adding an argument [3]. A
limitation in that work is that it considers only additions of a single argument.
A slightly different perspective is taken in the work of Liao, Lin and Koons [14],
where the impact of adding arguments and attacks plays a role in the efficient
recomputation of the extensions of an AF.

The ordering presented in section 5 is related to a preferential model se-
mantics for argumentation [15] and a study of nonmonotonic inference relations
to reason with AFs [4]. Also related are open labelings [16], which have a pur-
pose similar to ours, i.e., to identify arguments to attack in order to make a
labeling consistent with an AF, and an approach where arguments are labeled
with formulas expressing instructions on what to attack in order to change the
argument’s status under the grounded semantics [17]. We should also mention
other work in which (parts of) argumentation theory are formalized using logics.
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They include models using modal logics [18, 19]; translations of the problem of
computing extensions to problems in classical logic or ASP [20, 12]; and a study
of a logical language consisting of attack and defense connectives [21].

Finally, our model is related to the concept of a constrained AF, where an
AF is combined with a constraint on the status of the arguments [22]. However,
these constraints must be consistent with the AF’s outcome under the admissible
semantics, limiting the types of constraints that can be dealt with. Furthermore,
this work does not explore the relation between constraints and AF expansions.

9 Conclusion and future work

We believe that theories about dynamics in abstract argumentation should ad-
dress two issues: First, agents may learn or come to desire that an AF must have
a certain outcome and second, agents may expand their AF. Our solution centers
on the issue of dealing with incoherence after constraining the AF’s outcome.
Two ways to deal with this are AF expansion and by using fallback belief.

We plan to extend our work in a number of directions. First, our model al-
lows iterated updates only under the assumption that new observations never
contradict old ones. In order to allow this we have to look at revising the agent’s
constraint in the light of conflicting observations. Second, a number of generaliza-
tions are possible. For example, we may drop the requirement that observations
are conflict-free and we can allow removal of arguments and attacks.

Finally, we plan to investigate connections between the areas of abstract
argumentation and belief revision beyond those presented in this paper. We
believe that the approach of using a logical labeling language to reason about
the outcome of an AF is an essential step towards establishing such connections.
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