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Abstract

This thesis is concerned mainly with results involving the pre-ent and ent models
of belief formation. These models, pre-ents being the more general of the two,
were put forward by Paris and Vencovska as a possible explanation of how an
intelligent agent could conceivably be acting in forming numerical beliefs in var-
ious propositions. We prove a result which establishes, in succinct terms, the
essential difference between the two classes. This result may be interpreted as
saying that, starting from the class of pre-ents, if we restrict attention to that
subclass of pre-ents containing those pre-ents which satisfy a certain, natural,
property, then we are led automatically to the class of ents. We then move on to
trying to find instances of consequence relations which can arise from the pre-ent
model, and use this model to characterise a class of relations which we call fully
transitive natural consequence relations. This class contains as a subclass the

class of rational consequence relations defined by Kraus, Lehmann and Magidor.
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Chapter 1

Introduction

1.1 Motivation for Pre-Ents and Ents

Knowledge engineers (K.E.’s), faced with the task of building an expert system,
must begin with a knowledge collection stage which usually involves soliciting,
from a suitable human expert, i.e., one who shares the same domain of knowledge
as the required expert system, a set of facts or rules which the human expert is
supposed to use when forming judgements and beliefs. This set, or knowledge
base, has traditionally been assumed to take the form of a finite collection of
statements. For example, if the K.E. seeks to design a system to provide diagnoses
for patients visiting a health clinic, then s/he may ask a real human doctor to

supply a list of statements like the following:

Disease A is very uncommon
Symptom B is an indicator of disease C, though not a strong one

etc.
Once a knowledge base like this has been obtained, the usual practice is then, in

consultation with the human expert, to translate phrases such as “very uncom-

mon” in the above into numbers which reflect the numerical degrees of belief of
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the expert. These numbers will be real numbers between 0 and 1, with 1 cor-
responding to certainty, 0 corresponding to certainty in the negation and % to

indifference. For example the above two statements could be translated as

Bel(patient has disease A) = 0.01

Bel(patient has disease C' | patient displays symptom B) = 0.6

or, possibly,

Bel(patient displays symptom B and has disease C') =

= 0.6 x Bel(patient displays symptom B).

Here the function Bel is taken to be the real doctor’s personal belief function (or
conditional belief function), and the patient referred to is an entirely random, as
yet unseen, visitor to the clinic. In this way the builder of the required expert
system obtains a finite set S of (customarily linear) equations, or constraints,
over the rationals involving the beliefs of various propositions, thus completing
the knowledge collection stage of the system building process. What remains
for the K.E. to do to complete the construction of the expert system is then to
employ some “inference engine” which can use the knowledge contained in S to
generate new conclusions. For example, in the medical setting described above,
the system may be presented with a patient exhibiting a certain combination of
symptoms and will then, on the basis both of these symptoms and the given S,
form numerical beliefs regarding the possible different diagnoses. These beliefs
should, preferably, be close to the beliefs that the original human expert would
give in the same situation. The choice of which inference engine to employ will,
to an extent, be governed by which additional assumptions the K.E. would like
to put on the function Bel. (Note that it is extremely unlikely that S alone will
determine uniquely what function Bel should be.) For example Bel may be as-

sumed to satisfy the axioms of probability (see, for example, [3], [13]), or may be
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taken to be a Dempster-Shafer belief function [17], or to be a valuation in fuzzy
logic (see, for example, [5]). The choice of restrictions on Bel are normally justi-
fied by considerations of how a rational, intelligent agent ideally acts in forming
beliefs. (See [10] for a critique of each of the three approaches named above, and
also some examples of possible choices for inference engine, also [18] and [9].)
The preceding paragraph provides a summary of the task of the K.E. We now
turn to some of the assumptions which underlie the above programme. Firstly,
although it is rather infrequently made explicit, it is often assumed that the
knowledge base S which is solicited from the expert does not just represent the
expert’s knowledge but essentially is the expert’s knowledge. Furthermore it is
also implicitly assumed, with the rationality-motivated conditions on Bel in place,
that the K.E.’s choice of inference engine essentially corresponds to the actual
inference process that the expert him/herself uses to draw further conclusions
from his/her knowledge base S. Unfortunately there are a number of criticisms
which may be aimed at these assumptions. The first one is that the statements
of belief supplied by the expert, i.e., the set of equations in .S, usually turn out
to be seriously inconsistent with whatever the rationality-motivated conditions
on Bel are taken to be. For example, if Bel is assumed to be a probability
function, then it will often be the case that there is no probability function which
satisfies S, and similarly if Bel is taken to be a Dempster-Shafer function or a
fuzzy logic valuation. (This may indicate that the notions of rationality captured
by these extra conditions represent ideals which are rarely, if ever, achieved in
reality.) Secondly, the chosen inference engine will usually require calculations
and inferences which we ourselves, as intelligent human agents, are generally
rather poor at. What is more the methods involved in the engine will, assuming
the widely accepted hypothesis from computational complexity theory that RP

# NP, usually be computationally infeasible (see [10], [8]) so that, even if one
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were to forgive the expert system using extra-human processes so long as it still,
somehow, reached reliable conclusions, many of the inference engines described
in the literature would still leave something to be desired.

The ent and pre-ent models of belief were conceived by Paris and Vencovskd in
[12] with the intention of providing an alternative model of an agent’s knowledge
base, quite different to the usual model S described above, and of providing
also an interpretation for the agent’s belief function Bel. This interpretation
is based on modelling the expert, with the result that Bel becomes a derived
function, devoid of any a priori restrictions. Although these models are borne out
of considerations of how the agent might actually be acting in forming beliefs,

Paris and Vencovskd are quick to point out ([12] p199) that

“...we are not claiming this is the way human beings actually act,
only that it is a way some entities (who might perhaps consider them-

selves intelligent) might conceivably be acting.”

Roughly, the idea behind ents (i.e., ent models — henceforth we will normally
drop the word “model”) is that, when asked about his belief in a proposition, the
ent’s answer will be provided by the extent to which his knowledge of the world
supports a state of affairs in which that proposition, as opposed to its negation,
is true. More precisely the ent constructs imaginary, partial worlds in which
the sentence is decided (positively or negatively) by combining fragments of past
cases or, as we shall call them, scenarios. The belief given to the sentence is
then identified with the proportional weight of these partial worlds in which it is
decided positively.

In [12], the authors define the class of ents via a wider class of belief-forming
“entities” called pre-ents. Although, as we shall describe, ents are really a refine-
ment of pre-ents, many of our results will be directed specifically towards this

more general class. We leave the formal definitions of these models until Chapter
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2. We shall now give the overall plan of our material.

1.2 Plan of This Thesis

In Chapter 2 we formally define pre-ents and ents and give a summary of the
properties of their resultant belief functions Bel. We shall also see how these
models go some way to avoiding the criticisms of such as probability functions
given in Section 1.1 before ending the chapter with a short review of probability
functions. Chapter 3 is devoted to the study of some important binary relations
which arise from the pre-ent and ent models. Reproduced from [12] we have the
syntactic characterisation of the binary relation given by Bel(f) = Bel(¢) for
all pre-ents. In other words we answer the question of which pairs of sentences
are always treated as equivalent by any pre-ent. From this result we extract a
similar characterisation of the weaker relation given by Bel(f) < Bel(¢) for all
pre-ents, i.e., we answer the question of which pairs of sentences, in the world
of pre-ents, should be considered as logical consequences of each other. Then, in
Chapter 4, we give a detailed proof of a theorem which was first stated (without
proof) in [11] which shows the essential difference, as far as their resultant belief
functions are concerned, between the pre-ent and ent models. This result can be
read as showing how the ent model is more general than it might first appear, in
that it says that if we require of pre-ents a certain desirable property then we are
lead automatically to the class of ents. It is in this chapter that we first widen
our framework to include non-standard real numbers, and we again make use of
this setting in the final two chapters of this thesis. The work contained in these
chapters is motivated by a desire to find instances of non-monotonic consequence
relations arising from pre-ents and ents. In Chapter 5 we try and fail to find
instances of the rational consequence relations of [16] and [7]. Instead we define a

new class of consequence relation, more general than rational consequence, which
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we call natural consequence relations and show how instances of this type of rela-
tion do occur naturally in pre-ents. We also provide another example of a family
of natural consequence relation based on the framework of permatoms and show
how the class of rational consequence relations can be characterised inside this
framework. This last result is essentially the same as the one given in [7], though
there are differences in the method of proof. In Chapter 6 we attempt to find
an analogous characterisation for the natural case. We almost succeed, since to
obtain our result we need to augment the set of rules with which we define natural
consequence with a further rule. Any natural consequence relation which satisfies
this extra rule we call a fully transitive natural consequence relation. Thus what
we produce in Chapter 6 is not a characterisation of natural consequence but a
characterisation of fully transitive natural consequence. We end Chapter 6 by
showing how, by adding a further rule to the rules for fully transitive natural
consequence, we obtain a class of relations which may be characterised in terms

of ents.

1.3 The Propositional Setting

In this section we provide some basic background notation that will be used
throughout this thesis. Our setting will be the propositional calculus. We shall
always assume that L, L', etc. denote finite propositional languages, i.e., finite
sets of propositional variables. Furthermore, unless explicitly stated otherwise,
we take L = {p1,...,p,}, though we will often also use p,q,r, etc. to denote
propositional variables. Given a language L, we let SL denote the set of sentences
built up from the variables in L in the usual way using the connectives —, A and V
(we assume — and « are defined via these connectives in the standard way). We
use 6, ¢, 1, etc. to denote sentences. We use the symbol T to denote the sentence

p' vV —p' and L to denote p’ A —p’ where p’ is some fixed arbitrary propositional
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variable in L. Given p € L we define p! = p and p° = —p and we call any sentence

of the form p® for some € € {0, 1} a literal over L. We define the set of atoms over

L, Att, by
AtF = {p A2 AL AP |6 €{0,1) fori=1,2,...,n}.

We use lower-range Greek letters «, 3, etc. to denote atoms. So the set of atoms
consists of all conjunctions of literals o over L in which each variable in L appears
precisely once and always in the same position relative to the other variables
appearing in a. We let FC PSL x SL denote the binary relation of classical
logical consequence (with the usual abuses of notation such as writing 6 F ¢ for
{0} F ¢) and we let =C SL x SL stand for the binary relation of classical logical
equivalence on SL (so, for all §,¢ € SL, 0 = ¢ iff - 6 < ¢ iff both 6 F ¢ and
¢ F0). We call 0 a tautology if - 6 and a contradiction if = —6. For each 6 € SL

we define a set Sy C At” by
Sy ={a € At" | a k- 6}.

Then, by the disjunctive normal form theorem, 6 = \/ Sy (irrespective of the
order we take the atoms in Sy to be in). We also have 0 - ¢ iff Sy C Sy, - 6 iff
Sp = At S_p = At — Sy, Sprg = Sp N Sy and Spyy = Sp U Sy

With our background notation in place, we now move on to formally defining

the pre-ent and ent models of belief.



Chapter 2

Pre-Ents and Ents

2.1 Introduction

In this chapter we set up the definitions of pre-ents and ents. We start with the
more general class of pre-ents in Section 2.2, where we give an example of a pre-
ent together with a summary of the properties of their resultant belief functions.
We also indicate their connection with probability functions and sketch some
of the advantages which they hold over probability functions, Dempster-Shafer
functions, etc., in connection with the discussion in Section 1.1. We end that
section by pointing out some of the failings of pre-ents before showing, in Section
2.3, how we can rectify some of these failings by restricting our attention to ents.
We end this chapter in Section 2.4 with a brief description of the main properties

of probability functions.

2.2 Pre-Ents

Before we define pre-ents we need to give the formal definition of scenario.

Definition 2.1 We define a scenario (over L) to be a consistent subset of literals

over L. The set of all scenarios (over L) will be denoted by W L.

15
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We shall use s,t,u, etc. to denote scenarios. Let us now give the definition, as

given in [12], of a pre-ent over L.

Definition 2.2 A pre-ent over L is a function G : LXWLXxWL — [—1,1] such
that, for each p € L, s,t € WL,

o (i) Gy(s,t) >0 impliesp €t Ds, Gy(s,t) <0 implies -p €t D s.

o (ii) ¥, 1G,(s,0)] = 1.

o (iii) p € s implies Gy(s,s) =1, =p € s implies G,(s,s) = —1.

The idea behind this definition is that, for each p € L and each s,t € WL, if s
represents the current knowledge that the pre-ent GG has about the world then the
number |G, (s, t)| represents the likelihood that G, when called upon to imagine a
scenario in which p is decided one way or the other, will imagine ¢. By condition
(ii) in the above definition these likelihoods are in fact probabilities. Condition
(i) says that any scenario which either does not decide p or does not contain the
currently held scenario s has no chance of being imagined while condition (iii)
says that if p is already decided at s (which will sometimes be written £p € s)
then no act of imagination is necessary to decide p. The use of negative values
is just a useful way of indicating both the probability and the way in which p is
decided.

A pre-ent G is extended to a map from SLx W L x W L into [—1, 1] inductively

as follows:

Gﬁ9<3>t) = _G9<Sat)
>, Gol(s,m) - Gy(r,t) iftH6
Gong)(s,t) = Go(s,t) if t - -6

0 otherwise
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— >, Go(s,1r) - Gy(r,t) ift+H -0
Gove)(s,t) = Go(s,t) if t 6

0 otherwise

The motivation behind these definitions is that, for any 6 € SL, |Gg(s,t)| should
be the probability that the pre-ent Gz, given that s represents the current knowl-
edge that G' has about the world, will imagine the scenario ¢ when called upon
to imagine a scenario which decides 6 one way or the other, with Gy(s,t) being
negative just if ¢ decides 6 negatively, i.e., t = —=6. In the case of (0 A ¢), G will
first imagine a scenario r which decides 6. If this scenario decides # negatively
then it must decide (6 A ¢) negatively and so G stops here (this corresponds to
the middle case in the above definition of Gyag)). If r decides 6 positively then
G goes on to imagine a further scenario which extends r and decides the second
conjunct ¢. A similar process underlies the definition applying to the disjunction
(0V ¢). It may be checked, via an inductive (on ) proof (see [12] Theorem 2.1(b))

that, under these definitions, for any # € SL and s,t € WL,
Go(s,t) > 0 implies s C t F 6 and Gy(s,t) < 0 implies s C ¢ = —6. (2.1)

Definition 2.3 Given a pre-ent G over L as described above, we define the func-
tion Bel¢ : SL — [0,1], relative to the scenario s € WL, by setting, for each
0eSL

BelS(0) = > Gol(s,1).

t0
So, following the above discussion, Bel%(0) is the probability that G, given that
s represents the facts about the world that G knows to be true, will, when called
upon to imagine a scenario which decides 6 one way or the other, imagine a sce-
nario in which € is true. When no confusion will arise we will omit the superscript
G. In addition we will write Bel for Bely and identify this as the pre-ent’s “belief

function”.
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13

Let us straight away consider an example of the preceding definitions “in

action”.

Example 2.4 For this example we assume that L = {p,q}. Let G be the pre-
ent over L completely specified (in that all its other values are determined by the

definition of pre-ent) by the following values:

13 Pl P |7D,q | D,q| DG | Pq

OO!CO
=
|

(SIS

=

t q|-DP,q|p.q|P,q| D q
Gy(s,t)

=W

1
4

P
[IN[OV]

Then the following graph illustrates how G acts in computing a value for
Bel(—p A q).

{=p,—q} —pAq false

=\l

i~

{—p}

{=p, —q} stop, —p A q false

{=p,q} —pAqtrue

=

A

=

{p} stop, p true so —p A ¢ false

G begins in the situation represented by () at the root of the above tree diagram,
i.e., G knows nothing at all about the world. To determine his belief in =p A g,
G firstly constructs a scenario in which the first conjunct —p is decided. This is
what happens at the first branching in the diagram. There are three possibilities
here for G. The first possibility is that he imagines {p} with probability ¢ (cor-

responding to the bottom branch). In this case, since —p is false, he has decided



CHAPTER 2. PRE-ENTS AND ENTS 19

—pAq false and so stops there. The second possibility is that he imagines {—p, =¢q}
with probability % (corresponding to the middle branch). In this case G decides
the first conjunct positively and so stops to decide the second conjunct ¢, but he
realises that he is already now in a scenario in which ¢ is decided negatively and
so stops there with the whole sentence —p A ¢ decided negatively. Finally G may
imagine {—p} with probability 3 (the top branch). In this case, as in the second
one just described, the first conjunct is decided positively and so G then turns his
attention to the second conjunct. This time G must construct a further scenario
to decide whether ¢ is true. The two possibilities for this scenario are {—p, ¢},
which has probability % of being imagined from {—p}, and {-p,q}, which has
probability i of being imagined. In the former scenario ¢, and therefore the sen-
tence —p A q, is decided false while in the latter scenario the sentence is decided
true. Summing the probabilities of reaching a tip in the graph at which =p A ¢ is

decided positively gives

Bel(-p A q) =

N | —
e~ =
0]

A similar diagram can be drawn to show that, for the G' of Example 2.4, we
have

1
Bel(g N —p) = ¢

and so, unlike, for example, probability functions, pre-ents do not generally treat
A (or, for that matter, V) commutatively. The following theorem, which appeared
(minus (e)) as Theorem 2.4 in [12], tells us some basic properties which Bel, for

arbitrary s € WL does satisty.

Theorem 2.5 For a pre-ent G over L, s € WL and 6,¢ € SL,
(a) Bels(0V ¢) = Bels(—(=0 A —¢)),
(b) Bels(0 N\ ¢) = Bels(=(=0 V —¢)),
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(¢c) Bels(8) + Bely(—0) = 1
(d) Bels(0V ¢) = Bely(0) + Bely(—0 A ¢),
(e) Bels(0) = Bels(0 N ¢) + Bels(0 A ).

Proof. The reader is referred to [12] for the proofs of (a)—(d). Part (e) can also
be proved using results in [12] but, for completeness, we shall give here a direct

proof. We have
Bel,(0A¢) = > Gongls:t)

= Z ZG@(S,T) - Gy(r,t)

tHOAG T
by the definition of Gigags(s,t), since ¢ - 6.
Now, for any r,t € WL such that t - 6 A ¢, we have, by (2.1) above, that
Go(s,r) - Gy(r,t) # 0 implies s C r C t and either r = 6 or r = —6. But, in
this case, if r = =6 then, since r C ¢, we would have ¢t - =6 contradicting the
consistency (by definition of scenario) of t. Hence we must have r F # and we

may write

Bel,(0A¢) = > Y Gyls,r)- Gy(r,1)

tFOAG THO
= ) Gu(s,r) > Gy(r,t).
rko tHOAQ

Now, given r € WL such that r F 6 and t € WL, we have, again using (2.1),
that Gy(r,t) # 0 implies  C t and hence that also ¢ - 6. Hence, in the above
summation, we can drop the condition that ¢ = 6 since it holds anyway for all ¢
which make a non-zero contribution to the sum. Hence

Bels(0 N ¢) = ZGQ (s,7) ZG¢ (r,t) ZGQ(S,T) - Bel,(¢).

rH0 tH¢ rH0

By similar reasoning we can show

Bel, (0 A —¢) = ZGQST Bel,(—¢).

rH0
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Hence

Bely(0 A §) + Bel(9 A=¢) = > Go(s,r) - Bel,(d) + Y _ Go(s, ) - Belo (=)

rk0 0
= > Go(s.r) - {Bel,(¢) + Bel, (=)}
r-0
= Z Go(s,r) by (c) of this theorem
r6
= Bel(0)
as required. O

Note that an immediate corollary of part (e) of the above Theorem is that,

for any pre-ent G and s € WL, for all 8, ¢ € SL we have
Bels(0 N ¢) < Belg(0).

The properties listed in the above theorem 2.5 are all also satisfied by any proba-
bility function. The following theorem (Theorem 2.5 of [12]) reveals the conditions

under which Bel, may be identified with such a function.

Theorem 2.6 For any pre-ent G over L and s € WL, Bels is a probability
function on L iff one of the following two equivalent conditions hold:

(1) For all0,¢ € SL, Bel,(0 A ¢) = Bely(¢ N 0),

(2) For all 0,¢ € SL, Bel,(0 V ¢) = Bels(¢V 0). O

The following two theorems (2.6 and 2.9 in [12]) complete the basic properties

of Bel, for a pre-ent.

Theorem 2.7 Let § € SL and s € WL. Then s & 0 iff Bels(8) = 1 for all

pre-ents over L. In particular = 6 iff Bel(6) = 1 for all pre-ents over L. ]

Theorem 2.8 Let 0 € SL. Then 0 is satisfiable iff there exists a pre-ent G over
L such that Bel(0) = 1. O
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As they stand, pre-ents have a number of attractive features. One of these
relates to testing the consistency of a set of constraints S such as described in Sec-
tion 1.1. In general it is computationally infeasible to test whether a given set of
constraints S is consistent with Bel being a probability function, Dempster-Shafer
function, etc. By Theorem 2.10 of [12], provided the propositions #; appearing
in S are of short bounded length, it is feasible to test whether there is a pre-ent
satisfying S and, if so, to describe such a pre-ent. Another advantage relates to
one of the arguments given against such as probability functions in Section 1.1.
As indicated there, there is a problem concerning the infeasibility of the methods
proposed to generate new beliefs from S. In particular it is infeasible, given a
consistent S and 6 € SL, to compute an approximation to a value for Bel(6)
which is consistent with S. However this is not the case for a pre-ent, in fact it is
feasible to find, at least with high probability of success, a good approximation
to Bel() (or, more generally, Bel(f)) in time linear in the length of 6. (For the
precise details see [12].)

The belief functions yielded by pre-ents may be thought of as having much in
common with probability functions, with the big difference being that they do not
necessarily treat A (or V) commutatively — they are generally sensitive to the order
in which they receive, or review, pieces of information. Indeed this sensitivity can,
in some cases, lead to a pre-ent giving 6 A ¢ belief value 0 while giving ¢ A 6 belief
value > 0, or even value 1, for some 6,¢ € SL. For consider the pre-ent GG over
a language L such that L D {p,q} for which we have G,(0,{-p,¢}) = —1 and
G,(0,{p,q}) = 1. For this G we have Bel®(pAq) = 0 (indeed Bel®(p) = 0) while
Bel%(q Ap) = 1. According to the following proposition, this means that the set
of sentences believed with value 1 by a given pre-ent need not be closed under

logical consequences.

Proposition 2.9 Let Bel : SL — [0,1] be a function yielded by some pre-ent
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(i.e., Bel = BelQ)G for some pre-ent G over L). Then the following are equivalent:
(i). For all0,¢ € SL, if Bel(0 A ¢) =0 then Bel(¢p N 0) = 0.

(i1). For allk > 0 and for all 0y,...,0k, 0 € SL, if 601,...,0; F ¢ and Bel(6;) =1
fori=1,... k, then Bel(y) = 1.

Proof. To show that (i) implies (ii), suppose the function Bel is given by some
pre-ent G. Let 01,...,0,,% € SL be such that 6,,...,0; F 1 and suppose
Bel(6;) =1 fori=1,... k. We must show Bel(¢y)) = 1. We first notice that

O1,....0, it F=6;V =0V ...V =0,V
Hence, from Theorem 2.7, we have
Bel(_\el\/_\eg\/\/_ﬂk\/’ll)) =1

and so it suffices to show that, for any 6,¢ € SL, if Bel(§) =1 = Bel(—0 V ¢)
then Bel(¢) = 1. But if Bel(#) = 1 then Bel(—=6) = 0 by Theorem 2.5(c) which,
in turn, gives Bel(—0 A—¢) = 0 using Theorem 2.5(¢). Applying the condition (i)
then gives us Bel(—¢ A —0) = 0. Meanwhile, by Theorem 2.5(a), Bel(=0V ¢) =1
implies Bel(—(—=—0 A =¢)) = 1, which implies Bel(——60 A =¢) = 0 by Theorem

2.5(c). Applying condition (i) here gives us Bel(—=¢ A =—6) = 0. So we have

Bel(—~¢) = Bel(—¢ A —0) + Bel(—¢ AN ——0) from Theorem 2.5(e)

= 0

which gives Bel(¢) = 1 by Theorem 2.5(c) as required.

To show that (ii) implies (i) suppose Bel(6 A ¢) = 0. Then, using Theorem
2.5(c), we have Bel(=(0 A ¢)) = 1. Now, since =(6 A ¢) = (¢ A6), we may apply
condition (ii) to obtain Bel(=(¢ A #)) = 1 which in turn gives Bel(¢ A 0) =0 as

required. O
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It is easy to see that the above proposition remains true if we replace “Bel =
Bele for some pre-ent G over L” by “Bel = Bel¢ for some pre-ent G over L and
some arbitrary s € WL”.

The fact that a pre-ent’s belief function can fail to validate either one of the
conditions of Proposition 2.9 can be seen as a drawback of pre-ents, since both
are certainly desirable properties to have. Luckily there is a way in which we can
force these properties to hold while keeping the attractive features of pre-ents —
we simply restrict attention to the subclass of pre-ents called the ents. As we

shall see in the next section, ents also enjoy some other advantages over pre-ents.

2.3 Ents

The idea behind ents is similar to that behind pre-ents. An ent consists of a store
of scenarios with each scenario being assigned a potential which represents the
ease with which it springs to mind. Suppose that s € W L represents all that the
ent z knows about the world. When called upon to imagine a scenario in which
the variable p is decided one way or the other the ent will pull from his store of
scenarios a scenario ¢ which is consistent with s (rather than just extends s as
with pre-ents) and which satisfies £p € t (we assume +p ¢ s — of course z need
do nothing at this stage if it is asked about p and is already aware of the truth or
falsity of p). The ent then enlarges his currently known facts from s to sUt. The
main departure from pre-ents is now that (given ¢ consistent with s, +p € ¢) the
likelihood of the scenario ¢t being chosen at this instance does not depend on the
currently held scenario s or the particular propositional variable p being decided.
In order for this to yield a pre-ent we require that such a t always exists with

z; > 0. The precise definition is as follows:

Definition 2.10 An ent over L is a map z : WL — [0,00) such that, for all
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se WL and p € L, if p is not decided by s then there is some t € W L consistent

with s, deciding p, and such that z; > 0.

An ent z then yields a pre-ent G, which in turn yields the belief function Bel?,

simply by setting, for +p € s and s Ct € WL,

( Pl sUr =t .
Slalsur=t oy
> {z | sUr consistent and £p € r}
z - r U :t .
Gifst) = LU sUr=t ey
> {% | sUr consistent and £p € r}
0, if £tp & t.

0
We of course set GZ(s,t) = 0if s £ t and Gi(s,s) = 1 (Gi(s,5) = —1)ifpe s
(-p € s). Note that the condition expressed in Definition 2.10 ensures that
the above denominators are never equal to zero and so we can be sure that the
function Bel? is well-defined. In fact, this condition may be said to be a little
too strong for this purpose, and we will have cause to relax it later in this thesis
(see Chapter 4 Section 4.3). As an example of an ent, consider that ent z given

by the following tableau.

{r} {-»p-q} {-p} {¢}
1 3 4 1

S

Zs

Then it is straightforward to check that z yields the pre-ent G of Example 2.4 in
the preceding section. It follows that restricting attention to ents does nothing
to alleviate the problem of the non-commutativity of A and V. However whether
or not this is actually a “problem” is debatable. After all, it is true that human
beings, as one example of intelligent agents, do not always treat sentences of the
form 6 A ¢ the same as ¢ A 6 (such as when A is given a reading which includes
causal or temporal aspects — see [12] for an example). In addition, if we were
to insist on commutativity then, by Theorem 2.6, this would force Bel to be

a probability function and thus leave Bel open to the criticisms of Section 1.1.



CHAPTER 2. PRE-ENTS AND ENTS 26

Despite this possible fallibility in ents, they do enjoy some important advantages
over pre-ents. First of all specifying an ent only requires polynomial storage
space. This contrasts with the situation regarding pre-ents, which require space
exponential in the size of the language to specify them. Secondly (by Theorem
2.16 of [12]) we now have closure under logical consequence of sentences believed

with certainty:

Theorem 2.11 Let z be an ent over L and let 0y, ... 0,1 € SL. If Bel*(6;) =1
fori=1,... k and 0y,...,0, 1) then Bel*(¢)) = 1. O

(In fact, as we shall see in Chapter 4, as far as their resultant belief functions
are concerned, this is essentially the only difference between ents and pre-ents.)
Finally the way ents are represented — as a collection of scenarios together with
their associated potentials — would seem to lend itself naturally to a process in
which the ent learns about the external world by simply absorbing its experiences
as it goes along. For example if the ent “witnesses” a situation in which p and
q are true, then it could increase the potential it gives to the scenario {p, ¢} by
some fixed amount. (For a concrete example of a possible learning strategy for
ents, see [4].) Thus, if we were to make the assumption that the provider of the
constraint set S from Section 1.1 was an ent, then these scenarios, with their
associated potentials, might be thought of as the building blocks of the expert’s
statements of knowledge S, and so it is they, and not .S, which perhaps more truly
represent the “knowledge base” of the expert. We close this review of pre-ents
and ents by pointing out that there are some clear similarities between ents and

case-based reasoning, as described for example in [6].
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2.4 Probability Functions

At numerous points in this work (indeed several times already in the preceding
sections) we shall compare the belief functions of pre-ents and ents with proba-
bility functions. In this short section we give the formal definition of probability
functions, define the notion of conditional probability and state a simple repre-
sentation result for probability functions. The definition of a probability function,

given relative to a given propositional language L, is as follows:

Definition 2.12 A probability function over L is a function F : SL — [0,1]
which satisfies the following axioms, for all ,¢ € SL:

(P1) If = 0 then F(0) = 1.

(P2) If = =(0 A ¢) then F(OV ¢) = F(0) + F(¢).

An important consequence of these axioms (see [10] for a proof) is that any

probability function F' over L satisfies, for all 6, ¢ € SL,
0 F ¢ implies F'(0) < F(¢),
(and so 6 = ¢ implies F(6) = F(¢)).

Definition 2.13 Given a probability function F : SL — [0,1] and 0,¢ € SL
such that F(0) > 0, we define the conditional probability (relative to F') of ¢
given 6 by,

FOAo)

F(¢|9):W~

It is easy to see that, for a fixed # € SL such that F'(#) > 0, the function F(- | 0)
is also a probability function.

If F:SL — [0,1] is a probability function over L then, for all § € SL, since
0=\ Spand - —(aA\S) for any S C At" such that o € S, we may repeatedly
apply axiom P2 to get

F)=F(\/ %) =>_ F(a)

a€Sy
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While we also have

> Fla)=F(\/ At") =1

acAtL

by P1, since  \/ AtL. Hence any probability function over L is completely
determined by its values on the atoms of L. Conversely, if F': SL — [0,1] is any
arbitrary function on SL which satisfies, for all § € SL,
F()=> F(a)and Y F(a)=1
a€Sy acAtl
then it is straightforward to show that F' satisfies axioms P1-2 and so is a probabil-
ity function over L. Hence we have a simple representation result for probability

functions over a language L.



Chapter 3

The Logic of Pre-Ents and Ents

3.1 Introduction

This chapter is concerned mainly with certain special binary relations on SL
which arise from pre-ents. These relations will be fundamental in Chapters 5 and
6. In the first section we begin by looking at the relation ~ given by Gy = G
for all pre-ents. The syntactic characterisation of this relation given by Paris and
Vencovska in [12] helped them to give a similar characterisation for the weaker
relation ~ given by Bel(#) = Bel(¢) for all pre-ents (which, as it happens, is
equivalent to saying Bel(f) = Bel(¢) for all ents). Both these characterisations
will be given in the next section, along with some simple examples of the type of
syntactic manipulation of sentences which we perform under them. We shall also
prove a couple of closure conditions which ~ satisfies and give a result from [4]
which shows how we can express the relation of classical logical consequence F in
terms of ~. In Section 3.3 we show how each sentence can be reduced to a type of
“normal form” to which it is equivalent for pre-ents (and ents) and show that the
belief functions yielded by pre-ents are completely determined by the values they
give to all conjunctions of literals from distinct propositional variables. Finally, in

Section 3.4, we build on the results described in Section 3.2 by giving a syntactic

29
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characterisation of the relation [ given by Bel(f) < Bel(¢) for all pre-ents.

3.2 Logical Equivalence for Pre-Ents and Ents

In this section we examine the question of which pairs of sentences are equiv-
alent for pre-ents (and ents), i.e., given, #,¢ € SL, when is it the case that
Bel() = Bel(¢) for all pre-ents (and ents). In [12] Paris and Vencovskd give
a syntactic characterisation of the set of pairs of sentences for which this holds.
They achieve this via the following syntactic characterisation (Theorem 2.7 of

[12]) of the stronger relation Gy = G, for all pre-ents over L.

Theorem 3.1 Let the relation ~ C SL x SL be defined by, for0,¢ € SL, 0~ ¢
iff Go = Gy for all pre-ents G over L. Then ~ is the (unique) smallest relation
~ on SL which satisfies:

(1). If 01 ~ ¢1 and Oy ~ ¢ then (01 A O2) ~ (d1 A ¢a), (01V 02) ~ (61 V ¢2) and
=0 ~ —¢;.

(ii). ~ is an equivalence relation on SL.

(iii). 6 ~ ——0, ON(PNY)~ (ONG) N,
(0N P) ~ =0V —g, OV o~V (=0N),
ON—6~—-0N0, ONO ~0,
ON(PNE) ~ONG, (@V-9)VE~ oV,
ON(OV L)~ (BN V(0AY),
OV o) Ny~ (ONY)V (20 A (P NAD)). O

Note that the relation ~ defined in the above theorem was given relative to
an underlying language L. However, given the above result, it should be clear
that whether or not # ~ ¢ holds is actually independent of what we take this

underlying language to be. In other words, if ,¢ € SL; N SLy for different
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languages L and Lo, then Gy = G, for all pre-ents over L, iff Gy = G4 for all
pre-ents over L. Also, as is shown in [12], Theorem 3.1 remains true when we
replace “for all pre-ents over L” by “for all ents over L”. From the base set of

axioms and inference rules given in Theorem 3.1 we may derive the following (see

[12] Lemma A.7 for proof):

Proposition 3.2 Let ~ be any binary relation on SL satisfying (i) — (iii) from
Theorem 3.1. Then ~ satisfies the following:
(a) 0 ~ =0,

(b) 2(O N @) ~ =0V —9,

(c) 0 N—0~—=0N0,

() ON(pNO)~ O NG,

(e) ON(@V )~ (ONP)V(OAY),

(f) OV @) Nip ~ (B AY)V (20 A ($ A1),
(9) O N (@ Ntp) ~ (0N ) N,

(h) ON ¢ ~ OV (=0 A @),

(j) ONO ~ 0,

(k) (oV =) VO ~ &V g,

(1) ~(0V ¢) ~ =0 A =9,

(m) @V =0 ~ =6V 0,

(n) OV 6~ 0,

(0) (A=) NO ~ &N =,

(p) OV (@ AP) ~ (OV ) N0V ),

(q) (AP) VO~ (oVO) A (o V (¥ VI)),
(r) OV (dV ) ~ (BV@) Vi,

(s) NG~ ON(=0V ),

(t) (ONS)V(ON—0)~EONo,

(u) (OAP)V (0 AY) ~ (28 A1p) V(6 A ). U
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Out of the above list, rules (a)—(k) are just the rules listed under (iii) in The-
orem 3.1 repeated for convenience while (1)—(s) are just dual versions of some of
those rules. One thing to note about the above rules is the non-appearance of
OND~opNGor Vo~ ¢VEH. However we do have a restricted form of commuta-
tivity via the rule (u). In future proofs in this thesis concerning the relation ~ we
shall drop explicit mention of the uses of (i) and (ii) from Theorem 3.1 in proofs,
while, in view of (g) and (r) above, we shall often omit multiple parentheses from
conjunctions and disjunctions of more than two sentences. Also, in view of (a)
from the above proposition, we shall treat 6 and ——6 interchangeably from now
on. As an example of a proof involving the properties described above we now
show the following derived rule which will turn out to provide a useful short-cut

in proving one or two of our subsequent results.

Proposition 3.3 Let ~ be any binary relation on SL satisfying (i) — (iii) from
Theorem 3.1. Then ~ satisfies:

ON(pND) ~=(0N=0) A (O AY).

Proof. In the proof below the letters on the right-hand side correspond to the

relevant properties of ~ from Proposition 3.2 which we are using at each step.

ON(GAY) ~ (BN (GAD)V(=0ND) (t),(c)
ON(@AY)V(=OANIAP)  (0),(c)
~ (FONOND) V(O N (P AY)) (u)
(FONONY)V(OAGAONY) (d)
(=0 V ¢) A (0 Aep) (f)

)

~ (ON=g)A(OAY) (b

The characterisation of the relation ~ given in Theorem 3.1 paves the way

for the following characterisation of the more general relation of Bel(0) = Bel(¢)
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for all pre-ents. It should be noted that the following theorem appeared in [12]
(as Theorem 2.8), although the last condition under part (v) (i.e. 8 ~ 6V —¢, for

¢1 any classical tautology) was omitted from there in error.

Theorem 3.4 Let the relation ~ C SL x SL be defined by, for0,¢ € SL, 0~ ¢
iff Bel(6) = Bel(¢) for all pre-ents over L. Then ~ is the (unique) smallest
relation ~ on SL which extends ~ and satisfies:

(v). ~ is an equivalence relation.

(v). For @ € SL and ¢1,¢o € SL such that = ¢; for i = 1,2 we have ¢ ~
Gg, D1 ~ —pa, B ~ O NG and 0 ~ OV ¢y, O

Once again it should be clear that the definition of ~ is independent of the
underlying language and again, as is shown in [12], Theorem 3.4 remains true
when we replace “for all pre-ents over L” by “for all ents over L”. Note that, for
any relation ~ which extends ~ and satisfies (iv) and (v) above, we have - —¢
implies 6 ~ 6V ¢. This follows since - —¢ implies § ~ 6 V ==¢ by (v), while
OV ==~ 0V .

For a simple example of a proof involving ~ we give the following result,
which will be used freely in some of our later proofs. Again we omit explicit

mention whenever we use the fact that ~ is an equivalence relation.

Proposition 3.5 Let ~ be any binary relation on SL extending ~ and satisfying

(iv) - (v) from Theorem 3.4. Then ~ satisfies

OV P)NO~0.
Proof. We have
OVO)YNO ~ (BANO)V (0NN from Proposition 3.2(f)
~ ON0O since (=0 A @A)

~ 0 from Proposition 3.2(j).
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Hence, remembering that ~ extends ~ , we have (0 V ¢) A 0 ~ 6 as required. O

Note that, since the relation = of logical equivalence satisfies the conditions
of Theorem 3.4, we have that, for all #,¢ € SL, 6 ~ ¢ implies § = ¢. However
the converse is false since, as we have already seen, it is not necessarily the case
that 0 A ¢ ~ ¢ A 0. Another point to be wary about is that it is not necessarily
the case (unlike for the relation ~ ) that ¢; ~ 6y implies 0; A ¢ ~ 05 A ¢. We
do, however, have 6 ~ ¢ implies =6 ~ —¢ (as is easily seen from the fact that
Bel(—=0) = 1 — Bel(0) for all pre-ents) and also the following closure conditions
on ~ (I am grateful to J. B. Paris for providing the idea behind the proof of this

result):

Proposition 3.6 Let 0, ¢y, € SL. Then ¢y ~ ¢o implies O N\ ¢p1 ~ 0 A\ ¢po and
OV p1~ 0V ¢s.

Proof. Fix # € SL and define a relation ~yC SL x SL by setting, for all
Q1,2 € SL, @1 ~g P iff OA D1 ~ONpy. We will show that the relation ~y satisfies
all the conditions of Theorem 3.4 which will mean, since that theorem tells us
that ~ is the smallest binary relation on SL which satisfies those conditions,
that ¢ ~ ¢9 implies @1 ~g o for all ¢y, ps € SL as required. Firstly we have
that ~y extends ~, since ¢1 ~ ¢y implies 0 A 1 ~ 0 A ¢ implies (since ~ extends
) ONGAO N Py Secondly it is easy to check that ~y is an equivalence relation
on SL (since ~ is). Finally we must show that ~y satisfies condition (v) from
Theorem 3.4. So let A, x1, x2 € SL be such that F y; for ¢ = 1,2. Then x; ~y x2
follows since we already have 8 ~ 6 A x; for ¢ = 1,2, while =y ~y —x2 follows
since F y; implies = —(0 A —y;) for i = 1,2 and so 0 A =x1 ~ 0 A —=x2. To show
A ~g AN x1 we have OAAS (OAXN) Ax1~OA (AAx1). Lastly to show A ~g AV —x;
we have 0 AAXX (OAXN)V =0 A—x1) ~(@AN)V(OA-x1)~ON ANV o)1) as

required.
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Since 0V ¢ ~ (=0 A —¢y), the second part of the proposition now follows easily

from the first part and the fact that, for all ¥, 19, 11 ~ 1)y implies =)y ~ =)y, O

We end the present section with a result given by Gladstone in [4] (Lemma 3)

which provides a link between ~ and the classical logical consequence relation

.

Theorem 3.7 Let 0, € SL. Then 0 ¢ iff 6 ~ 0 N ¢. O

3.3 Normal Forms and Trees

Theorems 3.1 and 3.4 were actually proved in [12] by utilising two types of “normal
form” that exist for each sentence 6. These forms, especially the second one
corresponding to the relation ~, will often be very useful in what follows. Indeed
we shall use them to help us characterise the relation |~ in Section 3.4. First of
all we shall give the normal form which corresponds to ~ . The following lemma

appeared as Lemma A.8 in [12].

Lemma 3.8 For each 0 € SL there exists literals p:»fj’-j fori=1,...,m, j =
1,...,e(i), with e(i) > 2, such that for any relation ~C SL x SL which satisfies
(i), (ii) and (iii) from Theorem 3.1,

(1) 6 ~ \/igm /\jge(z’) p?gj

(2) Fori=1,....,m, Pic@i) = Die(i)—1- If €ie@s) = €ie(i)—1 then we call /\jge(z‘) p?jj
a positive clause, otherwise a negative clause.

(3) Fori=1,....,m and k < j < e(i), pij 7 Dik-

(4) For 1 <i <k < m there is j < e(i),e(k) such that p;’7 = pij, p7 = —pi;
and p;y = pzlf;f for1<r<j.

(5) For1 <i<m andj < e(i) there is 1 <k <m such that p; ; = prj, €i; # €k

and p;\" = pek'f;f for1 <r<j. O
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€ie(i)—1

The sequences pf-fil, .-y D)1 above may be thought of as the paths through
a binary tree such that no path contains a repeated propositional variable and
each node has just two edges out of it labelled p and —p for some p € L. The p/:((l’)
are joined to the end of these paths in order to label them positive or negative.
This idea should become clearer when we take in an example below.

As is shown in [12], for each 6, the sentence ;. A;<. pl’j in the above

lemma is unique and is given the following name:

Definition 3.9 Given§ € SL, the unique sentence \/,.,,, \;<.@ ;s from Lemma
3.8 is denoted by c¢T'(0). We denote the set of positive clauses (without their last
repeated literals) of ¢T'(0) by ¢T'(0)".

Thus we have, for all 8, ¢ € SL, 0~ cT(6) and (from [12]) 8~ ¢ iff ¢T'(0) = T (o).
The full inductive process for finding ¢7T'(6) for any given § € SL may be found in
[12]. We content ourselves here with providing an example which will hopefully

llustrate how this can be done.

Example 3.10 Let L = {p,q,r} and let 6 = =p V (=g A (r V =r)). We will
construct the binary tree which corresponds to ¢7I'(f). We begin reading 6 from
left to right until we come to a propositional variable. The first variable we find
is p, so we begin at the root of our tree with two branches, the left one leading
to a node labelled p and the right one leading to a node labelled —p. Taking the
right branch first, we see that if —p is true then, since the main connective of 6 is
V and since we now know the first disjunct is true, we know the whole sentence
0 is true and so we may stop here and label this path as being positive. If we
take the left branch and suppose p is true, then the first disjunct of 6 is false and
so we must continue to the second disjunct =g A (r V =r) of 6 to decide whether
0 is true. Thus our current position may be represented by the following tree

diagram:
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T,

? +

So, given we are at the node labelled with p, we must now read =g A (rV —r) from
left to right until we find a propositional variable. The first variable we come
across is ¢, so we draw two edges out of p, the left one leading to a node labelled
q and the right one leading to a node labelled —¢. On the left branching we see
that —q is decided negatively and so, since the principal connective of the second
disjunct of 8 is a A, that second disjunct is also decided negatively and so the
whole sentence 6 is decided negatively at this point leading us to stop here and
label this path negative. On the right branching —q is decided positively and so,
since 6 is still undecided, we must carry on to the second conjunct r V —r. Now

our current position is as follows:

Now, given that we have reached the node labelled —¢q via the node labelled p we
carry on moving left to right through r VV —r looking for the next propositional
variable. This variable is r and so we have two edge leading out from —¢q, the left
one leading to a node labelled r and the right one leading to a node labelled —r.
If we take the left branching to r then we see that the first disjunct in r V —r is
decided positively and so r V —r is decided positively. Hence the whole sentence
0 is decided positively and so this path gets labelled positive. If we take the right
branching to —r then the first disjunct in r V —r is decided negatively and so we
must move across to the second disjunct to see which way that is decided. In this
case we see without any further deliberation that it is decided positively and so
this path also gets labelled positive. Thus all our paths now have a label and we

arrive at the following tree representation of ¢T'():
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T -r
+ +

Thus ¢T'(0) = (pAgA—=q)V (pA—=gAT AT)V (pA—=gA—rA=r)V(=pA-p) and

Ot ={pA-gAr,pA—-gA-r,—p}

One thing to note about 7' is that, since the relation = extends ~ and so
also ~, and since 0~ ¢T'(0) for all § € SL, if 0 is a tautology then all the clauses
of ¢T'(0) will be positive, while if 6 is a contradiction then all the clauses will be
negative.

We shall utilise the ¢T-tree representation in Chapter 6. However for the most
part we shall deal in this thesis with the second representation for # which was

also given in [12]. Before we get to it we give another definition.

Definition 3.11 Given 0 € SL, we shall say that 6 is contingent iff both t/ 0
and t/ —0.

So 6 is contingent iff it is neither a tautology or a contradiction.
In [12] (Lemma A.12) it is shown how each contingent # € SL can be reduced

to a kind of normal form to which it is logically equivalent for pre-ents.

Lemma 3.12 For each contingent 8 € SL there exists literals p:’j for i =
L,...,m, j=1,...,e(i), with e(i) > 2, such that for any relation ~C SL x SL
which extends ~ and satisfies (iv) and (v) of Theorem 3.4, properties (1)-(5)
from Lemma 3.8 are satisfied together with the additional property:

(6) If i,k are such that 1 <i < k < m, e(i) = e(k), p;y = pj forj <e(i) -1
i) 1=€k e(k)—1 i,e(i) €k e (k)

and pje(i):ll = Drek)-1 - then p;e(i) = Doty (so just one of these clauses is

positive). O
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As is the case in Lemma 3.8 the sentence V/, ., ;< ;) Pi in the above lemma

<m

is unique and is given a special name:

Definition 3.13 Given 0 € SL such that 6 is contingent, the unique sentence
Viem Nj<eti) p;s from Lemma 3.12 is denoted by rT(0). We denote the set of

positive clauses (without their last repeated literals) of rT(0) by rT(6)*.

(Note that r7'(f) is undefined if 6 is non-contingent.) Thus we have, for all
contingent 6,¢ € SL, § ~ rT(0) and (again from [12]) 0 ~ ¢ iff rT'(0) = rT(9).
Also, since, as we have already pointed out, the relation ~ is independent of
the underlying language, so too is 7T'(d). Constructing r7'(#) for 6 a contingent
sentence amounts to, firstly, constructing ¢7'(f) and then repeatedly “pruning”
until no two paths of the same length which are the same until their last literal
have the same label. Let us try and make this clear by extending our earlier

example.

Example 3.14 Let L and € be as in Example 3.10. Then we already have a tree

representation of ¢7'(6):

_I_
A
r —-r
- -

Now from this we can see that the two paths p A =g A r and p A =¢ A —r have
the same length and agree everywhere but their last literal and that both have
the same label (i.e., positive). Hence we prune the ¢T-tree by replacing these two
paths by the single path p A —¢ which, since the two paths were labelled positive,

is labelled positive. This leaves us with
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T,
/\q +

— -

Since, in this new tree, no two paths of the same length which are the same until
their last literal have the same label, we may stop here and so we have found the
tree corresponding to r7'(#). Hence rT'(0) = (pAgA—q)V (pA=gA—q)V (—pA—p)

and rT(0)" = {p A ~q, ~p}.

As a special case of the above definitions, it should be clear following the above
example that, for 7 a conjunction of literals from distinct propositional variables
in L, rT(1)" = {7}.

We now intend to show how Bel(#) can be expressed as a sum of the Bel(7)

for 7 € rT(0)*. The following result is needed.

Proposition 3.15 Let m > 1 and, for each i =1,...,m, let 0; be a conjunction

of literals from L:

e(t)
Qi:/\p:,jj’.j e(i) >1,i=1,...,m.
7=1

Suppose the 0; satisfy the following property:

For any 1 <1 < k < m there exists j < e(i),e(k) such that p;; = pi;, € =
1 — e and p; = p:;’f for allr < j.

Then, for arbitrary ¢4, ..., ¢, € SL, we have the following:

(). V210 A i) ~ Vi 0oty N Goi)) for any permutation o on {1,...,m}.
(ii). Bel(\/2,(0: N ¢i)) = > iv, Bel(0; A ¢;) for any pre-ent over L.

Proof. (i). Since any permutation is a composition of transpositions it suffices

to show that, for any k& € {1,...,m — 1},

(\_/(91 A @)) V (Ok A dr) V (Oky1 A i) V < \/ (6; A @)) ~
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~ (\/(91 N @)) V (Ors1 A Grgr) V (O A @) V ( \/ (0; N @)) -

=1 i=k+2

This, in turn, will be proved if we can show

Ok A D)V (Or1 A Prsr) ~ Okt A diyr) V (O A D).

By assumption, we have that there exists j < e(k), e(k+1) such that py ; = pr+1,5,
€r; = 1 — €xq1; and p:f;f' = pZ’f:f;;' for all » < j. Let 7 = \/_] pZ’;’f' and p¢ = ij}j :
Then

Gk =T /\pE A\ (Sk and 9k+1 =T /\pl_6 VAN 5k+1

where d;, and 0y, are the (possibly empty) conjunctions of the remaining literals

in 6 and 0y, respectively. Hence

Ok A D)V (Orir Adrpn) = (TAD NG AGR)V (T AP A Gjyr A drp)
A T AT A A GV (DA Skt A D))
A T AP TN k1 A Grgr) V(5 A Gk A dr))
(using (u) from Proposition 3.2)
A (T AP TN Gk A drgr) V(T A DA Gk A By

= (Oks1 A Org1) V (Or A o)

as required.
(ii). We prove this part by induction on m. Trivially the result holds for m = 1
so let us assume m > 1 and that the result is true for all £ < m. Let 7 > 1 be

. o o e
minimal such that, for some 1 < r < m, we have p,”’ # pllf. Let 7 = NZ, pi'y

€1,5

and let p° = p; 7. Then our assumption about the ¢; implies that, for each

t=1,...,m each 6; is of the form

Hi:TAp“i/\éi
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for some v; € {0,1} and some (possibly empty) conjunction of literals J;. Let

I={ie{l,...;m}|v;=¢}and let [ ={1,...,m} — I. Then we have

m

\V:ing) <

i=1

where we define

\/(61- A ¢;) V \/ (0; A ¢;) by (i) proved above

i€l iel®

V@ Ap nsing) v \/ (T AP NG A ¢

el i€l

(T AP AN (G Ag)) V(T AP A\ (8 A i)
i€l i€lC

(T AP AY) V(T AD T Ahy)

Y1 = \/(0i A ¢y) and by = \/ (6; A ).

i€l i€IC

Hence, for any pre-ent over L,

Bel(\n}(ei ANgi)) = Bel((t Ap° Ar) V(T Ap ™ Aaby))
i=1
= Bel(r Ap* Aipr) + Bel(=(1 Ap Apr) A (T Ap' ™ Ahy))
(3.1)
from Theorem 2.5(d). We will now show that
S(TADTAU) AT AP T A) AT AP A,

To see this we have, from Proposition 3.3

(T AP AP A (T AP A2) 2T AT A Y1) A (A Yn) (3.2)

while

S(PTAY)APTAY) A (PTOV ) A (P A )

S PTIAPT A V(B A AT A )
(from Proposition 3.2(f))

A~ (PTAYR) V(T A AP T A
(from Proposition 3.2(j))

K plTE A (since F = (p¢ A by A Pt Aahy))



CHAPTER 3. THE LOGIC OF PRE-ENTS AND ENTS 43

which gives, using Proposition 3.6,

TASP AY) AP AY) ST APTEA Yy,

Combining this with (3.2) gives the required equivalence. Hence, going back to

(3.1) we may now write

m

Bel(\/(6: A ¢:)) = Bel(r Ap" Avpr) + Bel(r A p' Adby)
i=1
= Bel(\/(T AD N N ¢i)) + Bel( \/ (TAD A AB))
i€l i€l
= Bel(\/(@i A ¢i)) + Bel( \/ (0: A b3)).
iel iel®
Since I and I are both strict subsets of {1,...,m} we may now apply our

inductive hypothesis and write
Bel(\/(0; A ¢:)) = > Bel(8; A ¢;) and Bel(\/ (6; A ¢:)) = Y _ Bel(6; A ¢;)
i€l iel i€l i€l

from which the result now follows. O

Corollary 3.16 Let 8 € SL be contingent. Then, for any pre-ent over any
language containing L,

Bel(f) = Y Bel(r).

rerT(9)+
Proof. We have 6 ~ rT(f) (independently of the underlying language). Let
T1, ..., Tk be the positive clauses in 71°(0) and let 71, . . ., be the negative clauses.

Then, applying Proposition 3.15(i) we may write

k !
0~ \/Ti V \/'yl-.
i=1 i=1

Each ~;, since it is a negative clause, is of the form 6; A pi* A pz-l_e" for some
(possibly empty) conjunction of literals d;, p; € L and ¢; € {0,1}. Hence we have
= \/2:1 ~; and so

k
0~ \/Ti-
i=1
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Also, since g A g~ g for any literal ¢, this equivalence will remain true if we delete
the last repeated literal from each 7;. Thus

0~ \/ T.

TerT(0)+
Now, by property (4) of Lemma 3.12 we know that the 7 € rT'(0)" satisfy the
condition of Proposition 3.15 and so we have, for any pre-ent over L,
Bel(6) = Bel( \/ T) = Z Bel(r).
TerT(0)t TerT(9)+

as required. O

As a result of Corollary 3.16 we may now see that, for any pre-ent G over L,
the function Bel® is specified completely once its values on all conjunctions of
literals from distinct propositional variables in L are known.

Before moving on to the next section we give another property of 77'(6) (which
is not shared by ¢T'(f)). Note that given two (possibly empty) conjunctions of
literals over L o0 = A\, pj and p = A, qjj we shall say that o is an initial

segment of p if p = qu for j=1,...,r.

Proposition 3.17 Let 0 € SL be contingent. Let T = A\, qjj (r > 0) be an
initial segment of a clause /\de qjj of rT(0) such that r < d —1. Then T is an

initial segment of both a positive clause of rT'(0) and a negative clause of rT(6).

Proof. Let us assume that d is maximal such that 7 is an initial segment of
/\de qjj for some clause p = /\jgd q?j of rT'(f). Let us then assume that p is a
positive clause of rT'(0) (i.e. that qfldjf — ¢2). Then we need to find a negative
clause which also has 7 as an initial segment. By property (5) of Lemma 3.12
there exists a clause x (of length > d) of rT'(f) which contains, as an initial

segment, the sentence

5 1-644
AN T
j<d—2
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Now, since r < d — 1, the clause y also has 7 as an initial segment and so, by the
maximality of d, x must be of length d and so be of the form
N @ A A
j<d—2
for some v € {0,1}. By property (6) of Lemma 3.12 we must have v = §4 = 641
and hence x must be a negative clause of r1'(0) as required. If we assume that
p is a negative clause (i.e. that g4_1 = g4 but dq_1 # d4) then we can use exactly
the same reasoning as the above to find a positive clause of T'(6) which has 7 as

an initial segment. O

Note that, putting 7 to be the empty conjunction of literals in the above
lemma gives us that, for any contingent 6, rT°(f) has both at least one positive

clause and at least one negative clause.

3.4 Logical Consequence for Pre-Ents

In Section 3.2 we gave Paris and Vencovskda’s syntactic characterisation of the
relation ~. Our aim in this section is to use this characterisation as a springboard

to find a similar representation for the binary relation which we define below.

Definition 3.18 Let L be a language. We define the binary relation |~ C SL X
SL by, for all0,¢ € SL, 0 ¢ iff Bel(0) < Bel(¢) for all pre-ents over L.

Obviously we have 6 ~ ¢ iff both 6 |~¢ and ¢ [~0. Thus the relation |~ may
be thought of as being a “half” of the relation ~ . We shall need the help of the

following proposition which provides an expression of & in terms of 77 -trees.

Proposition 3.19 Let 0,¢ € SL be contingent sentences. Then 6 |~¢ implies

that every T € rT(0)" has an initial segment which is an element of rT(¢)*.
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Proof. Let 0, ¢ be two contingent sentences and let us suppose there existed an
element 7 € rT(0)" such that no initial segment of 7 was an element of r7'(¢)™.
Say 7 = A\ i<e pjj . Our result will be proved if we can produce a pre-ent G for
which Bel%(0) > Bel(¢). In order to do this let a < e be maximal such that, for
some clause (positive or negative, and including its last repeated propositional
variable) p = A, qjj of rT(¢) we have p; = qf-j for 7 < a. In other words, let
a < e be maximal such that some clause p of rT(¢) contains A, p; as an initial

segment. We need to examine two different cases.

Case (i): d=a+1

(This case can clearly only happen if a > 1.) In this case p must have the form
€5 da
p= /\ij /\qa++11
ji<a
where g,11 = p,. Now if also 0,41 = €, then p would be a positive clause of rT(¢)
and so A, p; € rT(¢)*. But this would imply that 7 had an initial segment
(namely A;.,p;) which was an element of r7(¢)* — contradiction. Hence we
must have d,.1 = 1 —¢,, i.e., p is a negative clause of rT'(¢). Let G be any pre-ent

for which

Gp, (0,1) = (=1, where t = {p{*,...,pc}.

Then, for any such G, we have Bel%(§) = 1 and Bel®(¢) = 0. To see this, note
that

Bel(r) = Bel(/\ p})

Jj<e
= Z Gpil (@,Sl)Gp;2 (51,82) s 'prf (8671,86)
51Cs2C - Cse
= Gpil (0, S)Gp§2 (s,8) - Gpel(s,s)

= 1
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Hence, using Corollary 3.16,
Bel?(0) = Y Bel(r') > Bel(r) = 1
TerT(0)+

and so Bel®(#) = 1. To show Bel%(¢) = 0 it is enough, by Corollary 3.16, to
show that Bel®(y) = 0 for all v € rT(¢)". So let v € rT(¢)". Remembering
that p = A, p; Apy° is a negative clause of rT'(¢) we know, by property (4)
of Lemma 3.4, that v must be of the form /\jét_1 pj-j Apr “Avforsomel <t <a
and some (possibly empty) conjunction of literals v. Since, as we have already
shown, BelG(/\jgep;j) = 1, and since Bel(A A x) < Bel()) for all pre-ents over
L and all A, x € SL, we have

Bel®( /\ 7 Apst) =1= Bel®( /\ p;).

j<t—1 j<t—1

Hence, using Theorem 2.5(e),

Bel®( /\ p pi=) = Bel%( /\ pj.j)—BelG( /\ pj.j/\p
j<t—1 j<t—1 j<t—1
= 1—-1=0.

This gives us

Bel®(y) = Bel®( \ 1 Api= Av) < Bel®( N\ pf Ap~) =0,

j<t—1 j<t—1

i.e, Bel%(v) = 0 as required.

Case (ii): d > a+1

So we have

= Nin A

Jj<a a+1<j<d
Since d > a + 1 we may apply Proposition 3.17 to establish that /\ i<a p;j is an
iitial segment of some negative clause p' = A,y AN Ngpi<jqr;’ of 7T(0).

We claim now that r,y1 # per1. To see this suppose otherwise. Then p/ =
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Nj<a D AP A Nagacj<y 7y and so, by Lemma 3.12(5), there must be a clause
of rT(¢) which contains A, py A pgifi as an initial segment. This contradicts
the maximality of ¢ and so we must have r,,1 # p.i1 as required. Now let
tr = {p¢,...,p}, to = {p, ... pSe} and t3 = {r,4%, ..., r' 7'} and define G
to be any pre-ent which satisfies:
Gy, (0,t1) = (—1)" = ifa >0,
G;Da+1 (tl, t1 U tg) = (—1)1_6‘”1
and GTHI (tl, ti U t3) = (_1)1—va+1.
Then, in a similar way to that in case (i) above, we can show that for any such

G we have Bel®(f) = 1 and Bel%(¢) = 0 as required. O

We shall see later that, in fact, the converse of the above Proposition 3.19
also holds, thus providing an alternative characterisation of 6 [~¢ (at least in the
case where 6, ¢ are contingent), this time in terms of r7T-trees.

Our approach to finding an axiomatic characterisation for |~ is based on
extending the list of axioms given via Theorems 3.1 and 3.4 for ~ . It turns out
that we need to add only one axiom and then close under transitivity. In the

next two lemmas we give some further rules which follow from this extension.

Lemma 3.20 Let << C SL x SL be any binary relation on SL which extends ~
(and hence also ~ ), is transitive, and satisfies, for all0,¢ € SL, 0N¢<160. Then,
forall 0,0 € SL and \ € SL such that = X\, < satisfies the following

1. 010V
2. 2\
3.0 <N
Proof. (1). Since F —(¢ A —¢) we have

0 <~ OV(pA—9)
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~ (OVO)A(OV—9)

< OVo

Hence, since <1 extends ~ (and ~) and is transitive, we have 6 <10V ¢ as required.

(2). Since F (6 A =) we have
AR (AN 0) S ON-0 <0

as required.
(3). Using (1) proved above we have § <6V —f. Then, since - 6 V =6 we have

0V -0~ X and the result follows. O

Lemma 3.21 Let < C SLx SL be any binary relation on SL which extends ~ ,
is transitive, and satisfies, for all 0,¢ € SL, 0 N <0. Let y,..., 7 (m > 1)
be conjunctions of literals over L which satisfy the condition of Proposition 3.15

and let ¢1, ..., ¢, € SL be arbitrary sentences. Then

(\_/(nA@)) V(T A dr) V ( \7 (ri/\@)) <

=1 i=k+1

< (\_/(TiAﬁbi)) V TE V ( C/ (TiAﬁbi))

i=1 i=k-+1
Proof. For ease of exposition let us set 6 = \/*— (1:A¢;) and 6y = Vit i1 (TiNgs).
So we must show

OV (T N )V by < 01V T V0o

We have

OV (T ANpp) Vs ~ (T Ady) VbV, by Proposition 3.15(i)
~ VOV O) N (2T Vb VLV 6s)
by Proposition 3.2(q)
< T VOV Oy by our assumption about <

~ 0,V TV 0,y by Proposition 3.15(i).
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Hence, since <1 extends ~ and is transitive, we have our required conclusion. O

We remark that the proof of the above Lemma 3.21 only requires < to extend
~ , and not necessarily ~ .

We now give our syntactic representation of the relation <.

Theorem 3.22 The relation [~ is the (unique) smallest relation < on SL which

extends ~ , is transitive and which satisfies, for all 0,¢ € SL, O N ¢ < 6.

Proof. First of all it is clear that [~ satisfies the conditions of the theorem since
it is easy to see that |~ extends ~ and is transitive, while § A ¢ |<0 follows
directly from Theorem 2.5(e). Hence the main work to be done in the proof lies
in showing that, for any relation << C SL x SL which also satisfies all those
conditions, we have, for all §,¢ € SL, 6 |~¢ implies § <1 ¢. So let <1 be such a

relation and suppose 6 F¢. We examine several separate cases.

Case (i): F =0

In this case we have =—6 <1 ¢ by property 2 of Lemma 3.20 and 6 ~ ——6. Hence,
since <1 extends ~ (and hence also ~ ) and is transitive, we conclude 6 < ¢ as

required.
Case (i1): 0
In this case we have Bel(#) = 1 for all pre-ents and so 0 ¢ implies also Bel(¢) =

1 for all pre-ents and so, by Theorem 2.7, we must also have - ¢. Hence 0 <1 ¢

by property 3 of Lemma 3.20.

Cases (i) and (ii) jointly take care of the situation where ¢ is non-contingent.
The remaining cases look at the situation where 6 is contingent. Note that if 6 is
contingent then it cannot be the case that - —¢ since this, together with 6 [<¢,

would imply F —6.

Case (iit)(a): 6 is contingent and F ¢
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In this case we have 6 <1 ¢ from property 3 of Lemma 3.20.

Case (i)(b): both 6 and ¢ are contingent

In this case rT(#) and rT(¢) are both well-defined and, by Proposition 3.19,
0 ¢ implies that every 7 € rT'(6)" has an initial segment which is an element
of rT'(¢)*. We have (from the proof of Corollary 3.16)

0~ \/ T (3.3)

rerT(0)+

Suppose rT(¢)" = {v1,...,Ym}, where v1,...,% (1 <1 < m) are those elements
in rT(¢)* which appear as an initial segment of at least one 7 € rT'(6)". For
each i = 1,...,l, denote by rT'(6)" /i the set of 7 € rT'(6)* which contain ~; as

an initial segment. Then

\/ T&v \/ '7'. (3.4)

For each i and each 7 € rT'(0)/i there exists a (possibly empty) conjunction of

literals p, such that 7 = ~; A p,. Thus we may write

\/ V T—\/ \V  ovne~\Nin e (3.5)

=1rerT(0)t/i =17erT(0)t/i =1 TerT(0)* /i
Hence, given that <1 extends ~ (and hence also ~ ) and is transitive, what we

have shown thus far, combining equations (3.3), (3.4) and (3.5) above, is that

0 < \/("}/Z A\ \/ pT)

TerT(0)* /i

For clarity let us set, for each i =1,...,1,

51’ = \/ Pr-

TerT(0)t /i
Note that §; may, possibly, be null. Then

l

0 < \V(une)

=1
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!
< \/ Yi by repeated application of Lemma 3.21
i=1

l m
< (\/ 7i) V ( \/ V) by property 1 of Lemma 3.20
i=1

= 1=l+1
v Vo

rerT(¢)+

Hence, again since < is transitive and extends ~ , we have 6 <1 ¢ as required. O

As is the case for ~ and ~ , we may now see that the definition of |~ is
independent of the underlying language. We do not show in this thesis whether
0 |~¢ iff Bel(0) < Bel(¢) for all ents (note the “only if” direction is trivial)
although we do believe that by modifying the proof of Proposition 3.19 to showing
the existence of an ent such that Bel*(0) > Bel*(¢) this result can be shown to
be true. Note that what we have shown in case (iii)(b) of the above proof is that,
for contingent 0, ¢ € SL, if every 7 € rT(6)* has an initial segment which is an
element of rT(¢)™ then 6 <1 ¢ for any binary relation < on SL which satisfies the
conditions of Theorem 3.22. In particular, then, 6 |[<~¢. Hence we have proved

the following improvement on Proposition 3.19:

Proposition 3.23 Let 0,¢ € SL be contingent sentences. Then 0 [<¢ iff every

T € rT(0)" has an initial segment which is an element of rT(¢)*. O

We shall meet yet another characterisation of |~ in Chapter 5. Before that
we shall now show what is the difference, as regards properties of their respective

belief functions, between pre-ents and ents.



Chapter 4

From Pre-Ents to Ents

4.1 Introduction

We saw in Section 2.3 (Theorem 2.11) that for any ent z over a language L
the set of # € SL such that Bel?(f) = 1 is closed under logical consequences,
equivalently (by Proposition 2.9), for any sentences 0, ¢ € SL, if Bel*(0 A ¢) =0
then Bel*(¢ A#) = 0. We also saw that this rather desirable result does not hold,
in general, for pre-ents. The aim of this chapter is to show that, essentially, and as
far as their resultant belief functions (by which, recall, we mean their associated
function Bely) are concerned, the validation of this property is the only place
where ents and pre-ents differ. More precisely this chapter is devoted to proving

the following (which was first stated, but not proved, in [11]):

Theorem 4.1 Given a language L = {p1,...,pn}, if the function Bel : SL —
[0, 1] is given by a pre-ent over L and if, for all8,¢ € SL, Bel(8 A¢) = 0 implies
Bel(¢ A 0) = 0, then there exists an ent z (over a larger language than L) such
that, for all € SL, Bel*(0) = Bel(0).

The reader will notice that, in this theorem, we allow our required ent to be

over a larger language than L, i.e., a language which contains L as a subset. In

23
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fact this is typical of many of Paris and Vencovskd’s results on ents. It seems
that, in the world of ents and pre-ents, the underlying language is often taken to
be open-ended. It is believed, though not proved, that the Theorem 4.1 fails to
hold if we require z to be defined over the same language L. It is also unknown
whether or not we may replace Bel everywhere in the theorem by Belg for some
arbitrary scenario s. Note that to show this Theorem 4.1, since, as we have seen
in Chapter 2, any function on SL given by a pre-ent over L is determined by the
values it gives to all conjunctions of literals from distinct propositional variables
in L, it will be enough to prove the existence of an ent z such that, for all such
conjunctions ¢; A ... A gj, we have Bel*(¢y A ... Ng;) = Bel(gn A ... ANgj). In
particular, if we take n = 1 in Theorem 4.1, i.e., if we suppose our language L
consists of just a single propositional variable p, then we are required to find an

ent z such that
Bel*(p) = Bel(p) and Bel*(—p) = Bel(—p).

In fact we may do this straight away (even without the extra freedom of defining

z over a language larger than L) by defining z via the following tableau:

{r} {-p}
Bel(p) Bel(-p)

S

Zs

It is easy to check that z defined above does indeed give the correct values to
Bel*(p) and Bel?*(—p). Thus we can see already that Theorem 4.1 is true in the
case when n = 1.

We shall prove the general case of Theorem 4.1 in three stages. A complication
which will arise is that the function which we produce (z4 in the upcoming proof),
although it will bear a very close resemblance to an ent and will compute beliefs
just like one, will not actually be an ent! The difference being that there will,

in fact, be scenarios s for which there exists a propositional variable p such that
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+p € s and there is no scenario consistent with s that both decides p and has
non-zero potential. However, it will be true that, in computing beliefs (starting
from (}), going from scenario to scenario, the function z,, will never be led to any
scenario which suffers from this problem and so it will still yield a well-defined
belief function Bel*>*. This leads us, in Section 4.3 to consider a wider class
of function (to which z,, belongs) than the class of ents — the class of almost-
ents. The first two stages of the proof are devoted to showing that Theorem
4.1 is true when “ent” is replaced in the statement of the theorem by “almost-
ent”. After introducing some key notation in Section 4.4 we describe the first
stage in Section 4.5, where we show that the theorem is true in the even more
general setting in which we allow our required almost-ent to have potentials which
are non-standard real numbers. These potentials will, in fact, be formal power
series in an indeterminate A (which may alternatively be thought of as a positive
infinitesimal — Section 4.2 will be devoted to the introduction of these concepts as
they are to be applied in this thesis.) Then, in the second stage to be described
in Section 4.6, we show that this particular extra freedom can be dispensed with
by showing how these non-standard potentials may be replaced with equivalent
standard ones. This turns out to be a question of showing how we may take our
indeterminate A to be a real number, provided it is sufficiently small, and all our
power series will converge. Finally in Section 4.7 we show how our constructed
almost-ent z,, may be converted into an equivalent ent. This ent will still be
defined over a language larger than L, though this language will be different from
the one over which our constructed almost-ent is defined. One important point
to notice about the proof of Theorem 4.1 is that, although the function Bel is
given by a pre-ent over L, absolutely no mention is made in the proof of this
pre-ent. The proof is “at the level” of Bel in that only properties of Bel are used.

One consequence of this is that we could if we wanted take the pre-ent itself to
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be defined over a larger language than L, although of course the ent we produce
would still only agree with Bel on SL. We shall exploit this point in Theorem
6.23 at the end of Chapter 6. We end the present section by giving an equivalent
form to one of the hypotheses of Theorem 4.1 which will prove to be more useful

in the upcoming proof.

Lemma 4.2 Let L be a language and let the function Bel : SL — [0, 1] be given
by a pre-ent over L. Then the following are equivalent:

(i). For all0,¢ € SL, if Bel(§ N ¢) =0 then Bel(¢p N 6) = 0.

(i1). For all j > 1 and all 61,...,0; € SL, if Bel(6; A ... N0;) = 0 then
Bel(\ S) = 0 whenever S C SL is such that {6; |i=1,...,j} CS.

Proof. That (ii) implies (i) is clear. For the converse direction suppose (i) holds.
Let 6y,...,0; € SL for some j > 1 be such that Bel(6; A ... A8;) = 0 and let
S C SL be such that {¢; | i =1,...,5} € S. We must show that Bel(/\ S) = 0.
We have Bel(6; A ... A6;) = 0 implies Bel(—(6; A ... A6;)) = 1. Hence, by
Proposition 2.9, since =(6; A...A0;) == A S, we have also Bel(— /A S) =1 and
so Bel(\ S) = 0 as required. O

4.2 Introducing Non-Standard Potentials

In this section we generalise our setting to include the possibility that our pre-
ents and ents (and the soon-to-be-defined almost-ents) will have potentials, and
possibly even compute beliefs, which are non-standard real numbers. (For a
full treatment of the subject of non-standard analysis the interested reader is
referred to [15].) We shall exploit the framework developed here also in later
chapters. To achieve this generalisation we will introduce a new symbol A to the
real numbers and extend the ordered field IR to the ordered field IR((\)) consisting

of all fractions of power series over IR in A. By the end of this section we will be
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in a position to modify our definition of pre-ent by, instead of interpreting them
as functions from L x SL x SL into [—1, 1], interpreting them as functions into
[—1,1]™ which denotes the set of values in IR((\)) which lie between —1 and 1
according to the ordering in IR((A)). Likewise we can modify the definition of ent
so that the potentials of the ent are now values in [0,00)™) — the set of values
of IR((\)) which are greater than or equal to zero according to the ordering in
IR((A)). In order to define the field IR((A)) we start from the set of formal power

series over R in the indeterminate A\, which we denote by IR[[\]]:

R[A] = {ao+aA+a)*+...]a; € Rfori=0,1,...}

= {Zai/\i|ai€]Rfori:0,1,...}.

i=0
Note that, at the moment, A is just a symbol. We do not (yet) want it to
take any actual real-numbered value whatsoever. Given a,b € IR[[\]] such that
a=Y s\ and b= 2 b\ we identify the two elements as being equal as
follows:

a="biff a; =b; forallv=0,1,2,...

so, essentially, the elements of IR[[A]] are nothing more than infinite sequences of
real numbers. Given a = Y ;o a;\" € IR[[N]] if there exists m such that a; = 0 for
all ¢ > m then we call a a polynomial in A and write a = a9 +a A+ - -+ a, A" =
oo aiA. In addition if a,, # 0 then we will say that m is the degree of a. We
will often use P(\), Q()) etc. to denote polynomials in A. Furthermore, given a
polynomial in A, we usually drop mention of any a; which are zero. For example
we will write 1 + 3\2 instead of 1 + 0\ + 3)\2. Given b € IR we identify b with
(the polynomial) b € IR[[A]], so essentially we have IR C IR[[A]]. We define binary

operations of addition, 4y, and multiplication, -5}, on IR[[A] as expected:

o

=0 1=0

1=0
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where +, of course, is the usual addition on IR, and

O ad) o O biN) =) e
=0 =0 =0

where, for each i =0,1,.. .,

i
C;, = E ajbi,j
=0

where a;b;_; denotes the product in IR of a; and b;_;. Alternatively we may write
the i*" coefficient of this product as
C = Z a;by,
jk=i
where the sum is understood to be over all pairs (j, k) of natural numbers such
that j 4+ k = i. By an easy induction we may generalise this and say that the i

coefficient of a product of k (> 2) terms

1) vi 2)\ 14 k)\i
a7 oy O aP A g O al N
=0 1=0 1=0

is given by
1 (2) (k)
Z Aj Qgy = Qg
J1tjatetin=i
where the sum is understood to be over all k-tuples of natural numbers (j1, jo, - - - , Jx)

such that j; + j2 + - -+ + ji = i. We define an ordering < on IR[[A]] by setting

i a;\! <\ i b\ iff there exists k such that a; # by, and

- - for the least such k, a;, < by
where < denotes the usual ordering on IR. Hence we have 0 <py A (i.e., 00X\ <[y
0+ 1X) and A <py b for any b € IR such that b > 0. Thus A looks like a
positive infinitesimal. Under the above definitions it easy to check that R[[A]]
forms an ordered ring (with, naturally, 0 € IR and 1 € IR acting as additive
and multiplicative identity respectively and — Y = ;A" = > "2 (—a;)AY). It is

also easy to see that the operations +y and -y and the relation <[y extend the
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corresponding operations and relation in IR. In view of this we will now drop the
subscript [A\] and, for example, use + for both the usual addition on IR and the
addition on IR[[A]].

From IR[[A]] we define IR((\)) to be the field of fractions of IR[[A]]:

R((V) = {5 | a.b € RA],b > 0}.

We define equality in this set by

a;  as .
b—llzb—z 1ffa1-b2:a2-b1,
and we identify a € IR[[A]] with ¢ € IR(())) so we have IR C IR[[A]] € IR((})).

To give an example of an equality in IR(()\)) we have

LN~y L 2 (=D
—Z( 1)A,1.e.,1+)\— .

since

(1+A).i(—1)ix = 1. i 1A+ X Z

=0 =

_ i )\Z+Z 11>\i

=0

I
— .

We further extend the operations + and - to IR((\)) by setting

aq a2_a1-b2+a2-b1

o bk

and
a1 Qa2 ay - az

bioby biby
(Note that, for by, by € IR[[A]], b; > 0 for ¢ = 1,2 implies b; - b, > 0 so both the

right-hand sides above are certainly elements of IR(()\)).) We extend the ordering
< to R((N)) by

aq
—<—ff by < as-b
by 621 ai - 02 a2+ b1
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and use a < b to mean that either a < b or ¢ = b. Under the above definitions
IR((M\)) becomes an ordered field.
Given the construction of IR((\)), we now make the following important def-

nition.

Definition 4.3 Let a € R((\)) and let m € IN. Then we say that a is of the
order O(\™), written a = O(X™), if a =Y .2ga;\" and a; = 0 for i < m.

Intuitively @ = O()\) means that a is infinitesimally small, a = O(\?) means that
a is infinitesimally small even in comparison with the O(\)-elements of IR((\)),
a = O()®) means that a is infinitesimally small even in comparison with the
O()\?)-elements and so on. Note that, under this definition, we have a = O(\™)

implies a = O(A™™1). So, following this definition, our earlier example shows us

1_‘_% = 0(\’) = O(1) and H—L/\ # O(A™) for all m > 1.

It should be noted that, given a € IR((A)), it is possible that a # O(A\™) for all
m € IN since it might be the case that a cannot be written in the form of a power
series (for example if @ = §). On the other hand we have 0 = O(A™) for all

m € IN although, as the following proposition makes clear, 0 is the only element

in IR((\)) for which this holds.

Proposition 4.4 Let a € R((N)). If, for allm = 0,1,2, ... we have a = O(\™)

then a = 0.

Proof. Suppose a = >~ a;\;. If a # 0 then we must have a; # 0 for some
k=0,1,.... Assume k is minimal such that this occurs, so then a = O(\¥), but

a # O\, 0

Corollary 4.5 Let a,b € R((\)). If, for all m = 0,1,2,... we have a — b =
O(A\™) then a = b. O
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The next two propositions are concerned with the arithmetic of the field
IR((N\)). They will be used repeatedly (often without explicit mention) through-

out the proof of Theorem 4.1.
Proposition 4.6 Let a € IR(()\)) be such that a = O(\F) for some k > 0. Then

—1+b

1+a

for some b € R((\)) such that b = O(N¥). We can express this result in an

abbreviated form by
1

TTo0M = 1L+ O\M).

Proof. Suppose a = > a;\" where a; = 0 for all i < k. We will show that, in

fact,

1 =~ .
1+a:C:ZCM

i=0
where cg =1, ¢; =0 for 0 < i < k and, for ¢ > k,

7
Ci — — E AjCl—j-
J=k

This will clearly suffice.
We have

iff c(l1+a)=1if c+ac—1=0

CcC =
14+a

and so to check the validity of our claim we must show that the i*" coefficient of
¢+ ac — 1, which we here denote by (¢ + ac — 1);, is zero for all i. For i = 0 we
have

(c+ac—1)g=co+apco—1=0

as required, since ag = 0 and ¢y = 1. For 0 < i < k we have

(c+ac—1); = ¢ —|—Zajci,j =0
=0
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as required, since a; = 0 for all j < %k and ¢; = 0 for 0 < i < k. Finally for ¢ > &

we have

(c+ac—1); = ¢+ Z a;jci_j
=0

= ¢+ Z a;ci—j since a; = 0 for all j < k
j=k

7 7
= — E G,jCk_j+ E ajCk_j
i=k j=k

=0
as required. O

Proposition 4.7 Let a,b € R((\)) be such that a = O(N¥) and b = O(N) for
some k,j5 > 0. Then

(i). a+b=O(N) where y = min{k, j}, that is, O(A\¥) + O(N) = O(WN),

(ii). a-b= O(N19), that is, O(N*) x O(N) = O(\F1),

(iii). § = O(N*7), that is, co)((ijg = O\, s0 long as k > j and b # O(NM11).

Proof. Let us suppose that

a= iai)\i and b = ibi)\i
i=0 i=0

where we know a; = 0 for all i < k and b; = 0 for all i < j.

(i). This is clear since i < y = min{k, j} implies i < k and ¢ < j which implies
a; = b; = 0 and so the i'" coefficient (a + b); of a + b is equal to a; + b; is equal
to zero.

(ii). To show a - b = O(A*7) we must show that the i® coefficient (a - b); of a - b
is zero for all i < k + j. We know

(a-b); = Z asby.

s+t=i

Then ¢ < k4 j and s + ¢ = ¢ implies either s < k or ¢t < j. Either way we must

have asb; = 0 and so (a - b); = 0 as required.
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(iii). Let us assume for this part that k > j and b # O(M11), i.e., b; # 0. Then
we may write

ak)\k + ak+1)\k+1 + ...
biN + b N+
‘;—fA’“*J’ + ‘“;f/\k*j“ +...

S| e

L+ 2520+
1
“T1o0
= ON7)x (14+0(\)  (by Proposition 4.6)

= o)

= O(N7) x O(1)
(since, for d € IR((A)), d =1+ O(X) implies d = O(1))

= O(\) (by (ii) proved above).

Given the preceding construction we now generalise our definitions of pre-ent

and ent as follows:

Definition 4.8 A \-pre-ent over a given language L is the same as a pre-ent
over L except that it is a function into [-1,1]N = {a € R((\)) | -1 < a < 1}
instead of just [—1,1] (and so it gives rise to a belief function Bel which takes
values in [0,1]™ = {a € R((\)) | 0 < a < 1}). Likewise a A-ent over L is defined
to be the same as an ent over L except that it is a function into [0,00)N = {a €

IR((A)) | @ > 0} rather than just [0, 00).

It is easy to see that all the results on pre-ents and ents given in Chapters 2 and
3 remain true for A\-pre-ents and \-ents.

Since in the rest of this chapter (in fact in the rest of this thesis!) we will
mainly deal only with pre-ents and ents which conform to the above definition
we will drop the prefix A and assume, unless it is otherwise indicated, that all

our pre-ents and ents are actually A-pre-ents and A-ents. If a particular pre-ent
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or ent picks up only values in IR then we will indicate this fact by calling it a
standard pre-ent or ent. We should emphasize that the pre-ent and ent referred

to in the statement of Theorem 4.1 are both standard.

4.3 Almost-ents

In this section, purely in the interests of proving Theorem 4.1, we weaken the
definition of (A-)ent to obtain the class of almost-ents. The precise definition is

as follows:

Definition 4.9 Let L be a language. An almost-ent over L is a function z :
WL — [0,00)™ which satisfies the following property: For all s € WL, if there
existty,...,t; € WL (j >0) such that s =t,U...Ut; and z;, > 0 fori=1,....j
then, for all p € L such that +£p & s, there exists t € WL such that s Ut is

consistent, £p € t and z; > 0.

An almost-ent z, then, is just like an ent (indeed we still call the value z; the
potential of the scenario t according to z) except that we allow that there may
exist a scenario s and a propositional variable p such that +p ¢ s and, for all
scenarios t such that +p € t and z; > 0, we have s Ut is inconsistent. In other
words, z has nowhere to go from s to decide p. However, the definition of almost-
ent ensures that any scenarios which suffer from this “defect” are, in any case,
“unimaginable” (from ()) according to z. Note that, in the above definition, we
include the possibility that 7 = 0, i.e., that s = (). Thus any almost-ent z satisfies
the condition that, for all p € L, there exists t € WL such that £p € t and
2 > 0. Also note that, by definition, any ent over L is an almost-ent over L.

As is the case with ents, and in a similar way, any almost-ent z over L yields
a pre-ent G* over L (which in turn yields a function Bel* : SL — [0,1]™ in the

usual way). This can be done as follows: Suppose we are given p € L, s,t € WL
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such that +p ¢ s and s C t. (Of course if s Z ¢ then we set G3(s,t) = 0 while if
(—p € s) then we set G3(s,s) =1 (G5 (s,s) = —1).) If there exist ty,...,¢;

peEs
( > 0) such that s =t; U...Ut; and 2, > 0 for i =1,..., j, then we define

( r|lsUr=t .
2l [sUr =1} ifp et
> {z | sUr is consistent and £p € r}
z - T U = t .
Go(s,t) = Z{Z |.8 r=1 if pet
> {z | sUr is consistent and £p € r}
0 otherwise.

(Note by definition of almost-ent that, here, none of the denominators will be
equal to zero. Also note that so far our definition of G* corresponds to the usual
way of defining a pre-ent from a given ent z.) In particular, taking j = 0 in the

above, i.e., s = (), we have, for all p € L and t € WL,

( “ ifpet
rp
YAz | £p e r}
Go(0,1) = & if ~p et
02 S Taen T
0 otherwise.

\

If it is not the case that s = ¢, U ... Ut; for some t; such that 2z, > 0 then we
simply define G7(s,t) in any manner so as to satisfy the definition of a pre-ent.

(For example defining G (s,t) by

. 1 ift=sU{p}
Gr(s,t) =

0 otherwise

would do.) The precise details of the definition of G* in this case are, for our
purposes in this chapter, irrelevant since, in going about its business of forming
beliefs (assuming it starts from (}), the almost-ent z will never encounter a scenario
s which is not formed as a union of scenarios which have non-zero potentials and
so the definition of G7(s,-) will never be called into action. To make this clear

let us consider how an almost-ent z over a language L would compute its belief
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in a conjunction of literals ¢; A ... A g; from distinct propositional variables in L.

We have, from our basic definitions in Section 2.2,

Bel*(n N ... N g;) Z Go(0,51) - Gg,(s1,82) - G (8-1,55) (4.1)

where G is the pre-ent yielded by z in the manner described above and the sum
is over all sequences of scenarios (over L) sy C so C --- C s; which satisfy (taking

so = (), for each i = 1,...,4, (i) ¢ € s;, (i) s; = s;.1 if ¢; € 8,1 and (777)

G? (si-1,5:) > 0. Now, for each such sequence and for each i = 1,..., j, we claim
Z{ ’ Z{ZCJ ‘tS 1 — tS i: . t} if g € sy
. 2 | sie consistent, =+g¢;
qu(sifla 8;) = ' ' 1
1 if g; € s;-1.

(Note that, whenever ¢ is a literal, we use ¢ to denote £p where p is the
propositional variable appearing in ¢.) To see this we use induction on i. For
t = 1 the above formula translates into

Zs,
YHze | £q1 € t}

which is true by our definition of G*. Suppose, for inductive hypothesis that

G: (0, 51) =

the formula is true for ¢ = 1,..., k. Clearly if qx11 € s then s;; = s and
ngﬂ(sk, Sk+1) = 1 as required. So suppose also that g1 & sk. Since we have
G? (si-1,8;) > 0 for i = 1,... k, it must be the case, using the inductive hy-
pothesis, that, for each 7 = 1,..., k, either s; = s;_1 or there exists at least one
scenario t such that s,y Ut = s; and 2z; > 0. Hence there must exist ¢,...,1,,
say, such that Uigz t; = s, and 2z, > 0 for ¢« = 1,...,l. Thus the formula also
holds true for ¢ = k + 1 by definition of G*, thereby completing the inductive
proof. Hence, given a sequence of scenarios s; C --- C s; which satisfies, for each
i=1,...,7, (i) @i € 8i, (i) s; = s;-1 if ¢; € 5,1 and (iii) G (si-1,8:i) > 0, we

may write

J
H (8i—1,8:) ZH@Z (si—1 LN 5 74) (4.2)
i=1
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where the summation here is to be taken over all sequences of scenarios r1,...,7;
which satisfy, for each i = 1,...,7, (i) s;1 Ur; = s, (i) if s; = 8;_1 then r; =0
and (i) if 7; # () then z, > 0, and the term ©7(s;_; - ;) which, as indicated,
depends only on ¢; together with the scenarios (over L) s; 1 and r; is defined as

follows

ZT‘i f @
1L 7; 7é
0% (511 @ ) > {2 | $;-1 Ut consistent, +g¢; € t}

We now tighten up our notation even further by making the following definition.

Definition 4.10 (a). Let g1 A ... A q; be a conjunction of literals from distinct
propositional variables in L. Then a scenario path (over L) for ¢1 A ... Ag; is a
sequence ' =11, ...,1; of scenarios over L which satisfies (i) ¢ € 1 and (ii) for
each i > 1, if giy1 € Upe; Tr then 1ipy = (), otherwise r;1 is such that q; 11 € rip1
and ngi rr Ur;q is consistent.

(b) Given an almost-ent z over L we shall say that the scenario path T for
¢ N ...\gqj is non-zero for z, to be abbreviated by 7 #, 0, iff for eachi=1,...,j

we have r; # O implies z,, > 0.

According to this definition, then, and combining the equations (4.1) and (4.2)
we may rewrite Bel*(qg1 A ... A g;) as
j .
Bel*(g N...Ng;) = Z H @Z(U T 5 1)
F£.0i=1  k<i
where the sum is over all scenario paths over L for ¢; A- - - A g; which are non-zero
for z and the terms ©*(|J,_, 7+ > 7;) are as defined above. Having established
the definition of almost-ents and developed a general formula for the belief an

almost-ent gives to a conjunction of literals from distinct propositional variables,

we now set the scene for our the proof of Theorem 4.1.
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4.4 Some Preliminaries

In this section we introduce the notation which we shall need in our proof of
Theorem 4.1. We shall continue to assume that we are working in the field
IR((N\)). As we previously indicated our first aim will be to prove the following

weakening of Theorem 4.1.

Theorem 4.11 Given a language L = {p1,...,pn}, if the function Bel : SL —
[0, 1] is given by a standard pre-ent over L and if, for all8,¢ € SL, Bel(dA¢) =0
implies Bel(¢pA\O) = 0, then there exists an almost-ent z (over a larger language
than L) such that, for all 8 € SL, Bel*(0) = Bel(0). The potentials of z are

elements in [0, 00)™.

Throughout the rest of this chapter we shall take Bel : SL — [0,1] to be our
fixed given function which satisfies the hypotheses of Theorem 4.11 (and Theorem
4.1). As was demonstrated at the beginning of the present chapter Theorem 4.1
is certainly true in the case where we take n = 1, i.e., when L consists of just
a single propositional variable. In view of this we shall, from now on in the
rest of this chapter, assume that n > 1. In the course of the upcoming proofs
(specifically Lemma 4.40 in Section 4.6) we shall need to rely on this assumption.
Before we begin the proof, which will take us through a host of lemmas, we need
to describe the various pieces of notation and abbreviation we will be using.
During the course of this chapter we shall need to talk about different lan-
guages which extend L, but when we refer to “a sequence of literals” we shall
always mean a sequence of literals from distinct propositional variables in L. We
shall denote the empty sequence of literals by (). (The context will always make
it clear whether we are referring to an empty sequence of literals or the empty
set!) We shall use o, 7, p, etc, to denote sequences of literals. Given a sequence of
literals o we shall define the length |o| of o to be the number of literals occurring

in 0, i.e., o] = j where ¢ = ¢ ---¢;. Thus we have that 0 is the one and only
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sequence of length zero. Note that |o| is bounded above by n = |L| since the g;
are literals drawn from distinct variables in L. Given two sequences of literals
o=q--q (j >0)and p = r1---75 (s > 0) such that ¢; does not appear
in p for ¢ = 1,...,5 we shall sometimes denote by op the sequence of literals
¢1---qjr1---rs and we shall write o C p to mean that p = o7 for some (possibly
empty) sequence of literals 7. If 0 C p we shall sometimes say that o is an ini-
tial segment of p. Whenever a (possibly empty) sequence of literals o = ¢ - - - ¢;
appears as an argument of a belief function, we are simply using it as shorthand
for the conjunction of literals ¢, A ... A g;. So, for a pre-ent G, Bel®(0) is just
shorthand for Bel%(q; A ... A g;) etc. Under this notation we have that Bel(0)
is the belief G' has in the empty conjunction of literals which, since we here adopt
the convention that any empty conjunction of sentences is a tautology, is always
equal to one. Another consequence of this notation is that we have, for any two
sequences o, 7, if ¢ C 7 then Bel(t) < Bel®(0). (Since Bel®(A A x) < Bel9(\)
for all pre-ents G and A\, x € SL.) Finally, for each j > 1, given a j-tuple of
objects @ = (as, ..., a;) then, given i < j, we shall use the notation dfi to denote
the i-tuple (aq, ..., a;).

As indicated in the above statement of Theorem 4.11 the almost-ent which we
produce in our proof will be defined over a language which extends the language
L. This language, which we will denote by L™, contains all the propositional
variables of L together with a set of new propositional variables, one for each

(non-empty) sequence of literals from L. Precisely we have
LT = LU{ug.q, | ¢ q; & sequence of literals, j > 1}.

Given a (non-empty) sequence ¢ - - - ¢; of literals we define the scenario s(q; - - - ;)

over LT as follows:

s(gi--q;) = {¢;} U {u, | o is an initial segment of ¢; ---q;, o # 0}
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U {-u, | 1 <|o| <jand o is not an initial

segment of g1 ---¢;}

So the scenario s(g; - --¢;) contains just one literal from the original language
L, i.e., the last literal occurring in the sequence ¢; - - - g;, together with a set of
literals from Lt — L which, in effect, play the role of “markers” which show how
the sequence “arrives” at ¢;. Given an almost-ent z over L™ we shall denote
the potential z gives to the scenario s(qq ---¢;) by 2(q1---q;). All the almost-
ents over L™ we shall encounter in our proofs in this chapter will give non-zero
potential only to the scenarios of the form s(o) for ¢ a non-empty sequence
of literals. In other words, all our almost-ents will be special according to the

following definition.

Definition 4.12 Given an almost-ent z over the language L™, we shall say that
z 1is special iff it gives non-zero potential only to scenarios of the form s(o) for o

a (non-empty) sequence of literals.

The forthcoming Proposition 4.14 provides the means by which we are able
to check whether or not a given function from WL* to [0,00)™ is in fact a
legitimate special almost-ent. However, before we get to it, it will prove useful to
know under what conditions two scenarios over LT of the form s(o) are jointly

consistent.

Lemma 4.13 Let o and T be non-empty sequences of literals. Then s(c) U s(7)

s consistent iff either o C 7 or 7 C 0.

Proof. First we show the “if” direction. By symmetry, we need look only at the

case where o0 C 7. Recall that, by definition, we have

s(0) = {a} U{u, |0 £ p S0y U{u, [ 1<|pl <ol pZ o}
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and
s() ={r}U{u, [0#p CriU{~w, 1< |p| <], p £ 7}

where ¢, respectively r, is the last literal in o, respectively 7. Now, since o C T,

we have that, for any sequence of literals p, if p C o then p C 7, Hence

{up|0#pC 0} C{u, |0#pCT).

We also have that 1 < |p| < |o| implies 1 < |p| < |7] (since obviously |o| < |7])

while if p Z o and |p| < |o| then, clearly, also p € 7. Hence

{mu, [1<pl <ol pZ o} S {u, [1<]p| < 7], p L 7}

Thus we may see that

s()Us() = {grU{u, [0#pCriU{-u, [1<|p[<|7l, p L 7}

= s(r)U{q}

which, since ¢ and r are either the same literal (if o = 7) or literals from different
propositional variables in L (by definition of a sequence of literals, since both
occur in 7), is clearly consistent.

Now for the “only if” direction. Suppose that both ¢ € 7 and 7 € o. Then
there must exist a (possibly empty) sequence of literals p and literals g # r such
that 0 = pg--- and 7 = pr---. But then, by the definition of s(¢) and s(7), we
have that u,, € s(0) and —u,, € s(7) which means s(c) U s(7) is inconsistent as

required. O

Proposition 4.14 Let z : WLt — [0,00)Y) be a function which gives non-zero
values only to scenarios over L™ of the form s(o) for o a non-empty sequence of
literals. Then z is an almost-ent over L™ iff it satisfies the following conditions:
A-E1. For all non-empty sequences of literals o and 7, if z(1) > 0 and 0 C 7

then z(c) > 0.
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A-E2. For all p € L there exists a non-empty sequence of literals o such that o
ends with £p and z(c) > 0.

A-E3. For all sequences of literals o such that z(c) > 0 and all p € L such that
+p does not appear in o there exists a sequence of literals T such that o C 7, T

ends with £p and z(t) > 0.

Proof. Before we begin the proof let us note that, since we are assuming our
function z gives non-zero values only to scenarios over L™ of the form s(o) for o

a non-empty sequence of literals, the condition of Definition 4.9 reduces to:

z is an almost-ent over L™ iff for all s € W L™, if there exist non-empty
sequences of literals o1, ...,0; (j > 0) such that s = s(oy)U...Us(0;)
and z(0;) > 0 for i = 1,...,7 then, for all p € L™ such that +p & s,
there exists a non-empty sequence of literals o such that s U s(o) is

consistent, £p € s(o) and z(o) > 0.

We first show the “only if” direction of the proposition. Let z be a special almost-
ent over L'. To show A-E1 let 0 and 7 be sequences of literals such that z(7) > 0
and o C 7. If 0 = 7 then obviously z(c) > 0 as required so suppose further that
o # 7 and that ¢ ends with the literal p°. Now out of all the scenarios which are
given non-zero potential by z the only ones which contain +p are those of the
form s(p) where p is a sequence of literals which ends with £p and out of these
the only ones which are consistent with s(7) are those which satisfy either p C 7
or 7 C p (by Lemma 4.13). Clearly we cannot have both p ending with +p and
7 C p (since this would entail £p appearing twice in p), while it should also be
clear that p C 7 and p ends with +p implies that p = 0. Hence it follows that o
is the only sequence of literals which satisfies both s(7) U s(o) is consistent and
+p € s(o) and so, applying the above reformulated condition from Definition 4.9,

we are forced to conclude that z(o) > 0 as required.
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To show A-E2 we know by the above condition that z being an almost-ent
over LT guarantees that, for each p € L, there exists a sequence of literals o such
that £p € s(o) and z(o) > 0. This suffices by definition of s(o) since £p € s(o)
iff o ends with +£p.

To show A-E3 let o be a non-empty sequence of literals such that z(o) > 0
and let p € L be such that +p does not appear in o. Then, in particular, o
does not end with +p and so £p & s(o) (by definition of s(¢)). Since z is an
almost-ent there exists a non-empty sequence of literals 7 such that s(o) U s(7)
is consistent, +p € s(7) and z(7) > 0. For any such 7 we have, by Lemma 4.13,
that s(o) U s(7) is consistent iff either o C 7 or 7 C 0. But £p € s(7) implies 7
ends £+p and hence we cannot have 7 C ¢ (since otherwise +p would appear in o
giving rise to a contradiction). Thus we have shown that there must exist some
7 which satisfies 0 C 7, 7 ends with +p and z(7) > 0 as required to show A-E3.

To show the “if” direction suppose now that z : WL* — [0,00)™ is a function
which gives non-zero values only to scenarios of the form s(o) and that z satisfies
conditions A-E1 - A-E3. We must show that z is an almost-ent over LT, i.e.,
that z satisfies the reformulated condition of Definition 4.9 given above. We will
look at the separate cases p € L and p € LT — L. Let p be a sequence of maximal
length amongst oy, ...,0; (take p = 0 if j = 0, i.e., if s = ). Then, since for
sequences o; and oy we know, by Lemma 4.13, s(0;) Us(oy) is consistent iff either
0; C oy or 0, C 0, and since s must be consistent (by definition of scenario), we
have ; C pfor alli =1,...,j. If p € L then either +p appears in p or it does
not. Suppose the latter case applies. Then if p = () then A-E2 above tells us
that there exists a sequence of literals o such that o ends with +p and z(o) > 0.
By definition the scenario s(o) contains the last literal which appears in o and
so +p € s(o) and the result is proved in this case. If p # ) then, since we have

z(p) > 0, condition A-E3 above tells us that there exists a sequence of literals
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o such that p C o, o ends with £p and z(¢) > 0. We have that s(¢) must be
consistent with s (since p C o implies 0; C o for all i = 1,...,j) and again this
scenario contains £+p which suffices. If £p does appear in p, say p = 7p°- - -, then
we may take s(7p°) as our required scenario since it is clearly consistent with s
and decides p, while z(7p) > 0 by A-E1. Finally we suppose that p € LT — L.
By the conditions A-E2 (if p = ()) and A-E3 we can construct longer and longer
sequences of literals § such that p C § and z(d) > 0 until we reach a ¢ such that
|0] = n. But then, by definition of s(9) for this d, we have that, not only is sUs(6)
consistent, but s(d) decides every propositional variable u, € L™ — L (indeed if
7 C § then u, € s(6) while if 7 Z § then —u, € s(d)). This completes the proof

of the proposition. O

Proposition 4.14 gives us an alternative way of thinking of special almost-ents
over L. It says that we may think of them as the class of functions z, defined on
the set of non-empty sequences of literals, which satisfy A-E1-A-E3. We now
wish to investigate how a special almost-ent z over Lt computes its beliefs in
sequences (as conjunctions) of literals from L. From Section 4.3 we have, for

¢1 - - - q; a sequence of literals and any almost-ent 2’ over L,

Belz Z H@Z U Sk si)

57’é /0 =1 k<i
where
2L )
— if s; # 0
o7 (| |5 % s) = > A7 | Ujes sk Ur consistent, £¢q; € r}
b 1 if 5; = ()
and the above sum is taken to be over all scenario paths (over L*) §=sq,...,s;

for ¢y - - - ¢; which are non-zero for 2’. In order to simplify the above formula,
we would like to know what these scenario paths look like in the case when 2’

is taken to be special. Let z be a special almost-ent over L*. We will now try
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and construct a scenario path (over L) §= sq,...,s; for the sequence g - - - g;
which is non-zero for z. To begin with, the scenario s; must contain ¢;. Now the
only scenarios which decide ¢; one way or the other, and get non-zero potential
(according to z), are those of the form s(p;) where p; is a sequence of literals
which ends with £¢;, and z(p;) > 0. Note that the condition A-E2 guarantees
the existence of at least one such scenario. Of these, the ones which decide ¢;
positively, i.e., satisfy ¢; € s(p1), are those for which p; ends ¢;. Assuming such
a pp exists, and given that s; has this form, it is clear that g, & s(p1) (since ¢
is the only literal from L which is in s(p;)). Hence sq is required to contain g,
be consistent with s(p;), and have non-zero potential. The only scenarios which
decide ¢ and have non-zero potential are those of the form s(ps) where p, ends
with a £¢, and z(p2) > 0. Out of these, by Lemma 4.13, the only ones which are
consistent with s(p1) are those for which we have either p; C ps or p, C p;. Hence
if ¢o appears in the sequence p;, say p; = Ti1¢2 - - -, then the only scenario which
decides ¢y and is consistent with s(p;) is s(71¢q2), which decides go positively.
Thus in this case we are forced to take so = s(71g2). Note that, in this case,
the condition A-E1 guarantees that this scenario has non-zero potential. If g,
appears in p; (where, given a literal ¢ = p¢, we define ¢ = p*~¢), say p1 = TGy - -
then the only possible scenario is s(71G,). Thus in this case there is no scenario
which is consistent with s(p;) and decides g, positively. If neither ¢, nor g, appear
in p; then the scenarios which decide ¢o, are consistent with s(p;), and get non-
zero potential are all the scenarios of the form s(py) where p; C pa, po ends with
+q2, and z(py) > 0. Note that the condition A-E3 guarantees the existence of
at least one such p,. Hence, provided at least one of these py’s ends with ¢o, we
can take sy = s(p2) where p; C po, po ends with g, and z(py) > 0. To complete
the rest of the scenario path we may continue in this way, for suppose we have

constructed sq, ..., s, (for some k < j) where J,., s; is consistent and, for each
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i=1,...,k, we have that s; = s(p;) where p; ends with ¢; and z(p;) > 0. Suppose
pi, is the longest sequence so far constructed amongst {p; | i =1,...,k} and so,
since (J;;, s(pi) is consistent, p; C py, for each i = 1,...,k by Lemma 4.13. It
is clear that qp 1 & Uigk s; (since qi,...,qg are the only literals from L which
are contained in this set). Hence sjy; is required to contain g1, be consistent
with Uigk s; and have non-zero potential. As above, the only scenarios which
decide qx1, are consistent with Uigk s; and get non-zero potential are those of
the form s(pg41) where pry1 ends with i1, 2(pr+1) > 0 and either p;, C priq
or pr+1 € pi,., with gz41 being decided positively iff pyi1 ends with g1;. Hence
if gx+1 appears in p;,, say p;, = TkQk+1 - -, then the only possibility is to take
Pi+1 = TrQr+1 while if @, appears in p;, then there is no scenario consistent
with (J, <k Si which decides g4, positively. If, on the other hand, +¢;.1 does not
appear in p;, then we may take ppy; to be such that p;, C pit1, pr+1 ends with
@1 and z(pg41) > 0. Hence we may see that the scenario paths for g - - - ¢; which
are non-zero for z have a special form, which we may express via the following

definition.

Definition 4.15 Letq - - - g; be a non-empty sequence of literals. A non-monotonic
(n-m) sequence path forq; - - - q; is a sequence of sequences of literals p = p1, ..., p;
which satisfies (i) p1 ends with g1, and (ii) for each i > 1, if gi+1 appears in py,
(where l; is such that |p;,| is maximal amongst {|px| | k = 1,... i}, i.e., p, is
the longest sequence thus far constructed), say pi, = TiQiv1 - -, then pit1 = Tiqit1,
otherwise p;;, C piv1 and piy1 ends with gi1. We shall denote the set of all n-m
sequence paths for g, ---q; by ﬁ(ql e gj).

Given a special almost-ent z over LT, we shall say the n-m sequence path [ is
non-zero for z iff z(py;) > 0, equivalently (by A-E1) z(p;) > 0 foralli=1,...,].

We shall denote the set of n-m sequence paths for qi - - - q; which are non-zero for
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-~

2 by N.(q1---¢q;). Thus

ﬁz(Ql qy) ={p€ ﬁ(ch ~qj) | 2(py;) > 0}

Example 4.16 To give some examples of n-m sequence paths let us assume
temporarily that L = {p,q,r,s}. Then an obvious n-m sequence path for the
sequence pqr is p where p; = p, po = pq and p3 = pgr. Another possible n-
m sequence path for this particular sequence of literals can be given by setting
p1 = 1rqp, p2 = rq and ps = r. Yet another possibility is to take p; = gp, p2 = ¢

and p3 = qpsr.

Given a special almost-ent 2z over LT it should now be clear from the above
discussion that the scenario paths § over L% for ¢, - - - ¢; which are non-zero for
z are precisely those paths of the form s(p;),...,s(p;) where p'= py,...,p, is a
n-m sequence path for ¢; - - - ¢; which is non-zero for z. Hence we may write
J
z z qi
Beli(qi---q) = Y [[o°(Uslor) * s(p) (4.3)
PEN:(q1-q5) =1 k<

where, for each p' € Nz(ql ---q;) and for each i = 1,...,7,

O (| slon) 2 s(pi) = 2(pi)

bt > A2(7) | Up<; 5(px) U s(T) consistent, £¢; € s(7)}
(since we always have s(p;) # ()
z(pi) .
B z(pi) I P = P14
2\ Pi .
(e:) if pr,_, € pi

>Hz(r) | pr,_, €7, T ends + ¢}

Where, as in the discussion above, p;,_, is the longest sequence amongst {px | k =
1,...,i—1}.

We shall be using the above representation in Section 4.7. For the rest of the

present section, however, it will be convenient to slightly modify Definition 4.15

and work with a different type of path, one which contains essentially the same

information as a non-monotonic sequence path.
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Definition 4.17 Let q; - - - q; be a non-empty sequence of literals. Then a mono-
tonic sequence path (hereafter sequence path) for ¢y ---¢q; is a sequence of se-
quences of literals ¢ = o1,...,0yz) which satisfies (i) o1 ends with qi, (i) for
each i > 1, 0, C 0,41 and 0,41 ends with g where t is minimal such that q; does
not appear in o;, and (iii) () — the length of the sequence path & — is minimal
such that, for all 1 <1 < j, q; appears in o). We denote the set of all sequence

paths for qi---q; by P(Q1"'Qj)-

So the monotonic sequence paths for ¢; ---¢; are just obtained from the non-
monotonic sequence paths for ¢; - - - g; by, for each 7 € ﬁ(ql -+ q;), first forming
the sequence 0y,,0y,,...,0;, and then, reading this sequence from left to right,
discarding any repeats. The canonical example of a sequence path for a sequence

of literals ¢; - - - ¢; is provided by the following definition.

Definition 4.18 Let q; ---q; be a non-empty sequence of literals. The sequence
path qr---q;) € P(q---q;) is defined to be that path & = oy, ...,0; for which

oi=q---q fori=1,...,7.

If the context makes it clear which sequence of literals we are talking about then
we will sometimes just write ¢ instead of {g; - --¢;). The following proposition

lists some basic characteristics of sequence paths.

Proposition 4.19 Let g, ---q; be a non-empty sequence of literals and let o €
P(q1---qj). Then the following are true:

(1). |oiz1| > |oi| fori=1,...,1(c) — 1.

(i1). |og| =i fori=1,...,1(F).

(iii). 0 < |oygz)| —1(6) <n —1.

(iv). |owz)| = 1(F) iff ¢ =gy - q5).

Proof. Property (i) is clear from the definition of sequence path. Property (ii) is

provable by induction on i: it is obvious for the base case i = 1 while given that
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it is true for ¢ we have |0;41| > |o;| (from (i)) > ¢ (from the inductive hypothesis)
and so |o;,1| must be equal to at least i + 1 as required. To show property (iii)
we have, by (ii), that |oyz| > (&) while clearly |oy#)| is bounded above by n
and [(7) is bounded below by 1. Combining this information gives the result.
Finally to prove (iv) we have, by definition of i, that ¢ = "implies |0y | = I(5)
while for the converse suppose & # ¢ and let ¢ be minimal such that o; # ¢ - - - ¢;.
Then it should be clear that this implies that |o;| > i+ 1 and so, from (i) above,
|oiv1| > |os| +1 > (i+ 1) + 1 which in turn gives |o; 10| > |oi11| +1> (i1 +2)+ 1

and so on until we reach |oy)| > I(¢) + 1 as required. O

Definition 4.20 Given a non-empty sequence of literals q; - - - q;, a sequence path
d for q1---q; and a special almost-ent z, we shall say that ¢ is non-zero for z
iff (o) > 0, equivalently (by A-E1) z(o;) > 0 for all it = 1,...,1(5). We
shall denote the set of sequence paths for qi ---q; which are non-zero for z by

N.(q1---qj). Thus
N+ q5) ={7 € P(qi---q5) | 2(0u&)) > 0}.
It should now be clear that, taking oq = () throughout, we may rewrite (4.3) as

Bel*(qi---q;) =
1(&)

> I ) (4.4
SHz(7) | 0i1 € 7, 7 ends + ¢ where o; ends ¢}

FEN:(q1--q5) i=1

Note that all denominators in the above expression are non-zero. This is because
7 € N.(q1---q;) implies z(0;) > 0, and z(0;) always appears in the denominator.
The term in this sum for which ¢ = i{¢; - - - ¢;) (if it occurs) we will call the lead
term. Hence we have found a general formula, which we shall use repeatedly in
what follows, for the belief given to any conjunction of literals by any special

almost-ent over L.
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The following lemma allows us to prove that all the almost-ents which we
construct in the proof of Theorem 4.11 are indeed legitimate almost-ents. Its
second part is a consequence (via Lemma 4.2) of the property assumed of Bel in
the hypotheses of Theorem 4.11 (viz. for all ,¢ € SL, Bel(6 A ¢) = 0 implies
Bel(¢p AN 0) =0).

Lemma 4.21 Let z : WL* — [0,00)™ be any function which gives non-zero
values only to scenarios of the form s(o) for o a non-empty sequence of literals.
Then, if z satisfies

z(0) =0 iff Bel(o) =0,

then z is a (special) almost-ent over L. Furthermore we have, for all sequences

of literals q1 - - - q;, Bel(qy ---q;) = 0 implies Bel*(qy - - ¢q;) = 0.

Proof. To show that z is an almost-ent over L™ we simply need to check that
any almost-ent z over WL which satisfies the above condition also satisfies the
conditions A-E1-A-E3 from Proposition 4.14. Beginning with A-E1, let o and 7
be non-empty sequences of literals such that z(7) > 0 and ¢ C 7. We must show
z(o) > 0. But if it were the case that z(¢) = 0 then we would have Bel(c) = 0
by hypothesis and hence, since 0 C 7 implies Bel(7) < Bel(c), we would have
Bel(T) = 0 and so z(7) = 0 giving a contradiction. Hence z(c) > 0 as required.

To show A-E2 let p € L. We must show that there exists a sequence of literals
o such that ¢ ends with £p and z(o) > 0. But since Bel(p) + Bel(—p) = 1 we
must have that either Bel(p) > 0 or Bel(—p) > 0 and so either z(p) > 0 or
z(—p) > 0 which clearly suffices.

To show A-E3 let o be a non-empty sequence of literals such that z(o) > 0
and let p € L be such that +p does not appear in 0. We must prove the existence
of a sequence of literals 7 such that ¢ C 7, 7 ends with +p and z(7) > 0. But
z(o) > 0 implies Bel(o) > 0 and so, since Bel(c) = Bel(op) + Bel(o—p), we

must have either Bel(op) > 0 or Bel(o—p) > 0, i.e., Bel(op) > 0 for some e.
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Hence the sequence op® meets our required criteria since obviously o C op® and
op® ends with +p, while Bel(op®) > 0 implies z(op) > 0 by hypothesis.
Now let us show the last part of the lemma, i.e., that for all sequences of

literals ¢ - - - ¢; we have Bel(q; - - - ¢;) = 0 implies Bel*(q; - - - ¢;) = 0. We have

Bel*(q1 -+ - q5)

_ z(04)
N Z H S{z(7) | 0i1 € 7, T ends + ¢ where o; ends ¢;}

Hence Bel*(qy---q;) # 0 iff there exists a sequence path for ¢, ---¢; which is
non-zero for z (equivalently N,(q;---q;) # (). Suppose there existed such a
path &. Then, by definition of non-zero, we would have z(oy&) > 0 and so, by
assumption, Bel(oyz)) > 0. But this would give, by Lemma 4.2, Bel(q; - - - ¢;) # 0

as required, since, for all i =1,...,j, we have that ¢; appears in o0y). O

We remark that the second part of the lemma is true if we relax the hypothesis
to Bel(o) = 0 implies z(o) = 0 for all sequences of literals o. Lemma 4.21 provides
(via Lemma 4.2) that portion of the hypothesis of Theorem 4.11 (for all 8, ¢ € SL
Bel(6 N\ ¢) = 0 implies Bel(¢ A 6) = 0) which will in fact be used in the proof. It
will be used only in Lemmas 4.23 and 4.27.

Given that we now, hopefully, have a rigorous understanding of the workings
of special almost-ents over L, we now make a start on stage one of our proof of

Theorem 4.1, i.e., the proof of Theorem 4.11.

4.5 Stage 1 — Constructing the Almost-Ent 2z

Having finally set up all the machinery which we shall be using in the proof
of Theorem 4.11 it is now time to begin the proof proper. Our strategy is to
inductively define an infinite sequence of special almost-ents over L 2y, 21, 22, . . .,

showing as we go that the following are satisfied, for all m =0,1,2,.. .,
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S1. For all non-empty sequences of literals o, z,,(0) = 0 iff Bel(o) = 0.

S2. For all non-empty sequences of literals o, z,,(c) # 0 implies z,,(0) =

ONe=1) and z,(0) # O(Al7]).

S3. For all non-empty sequences of literals o, Bel* (o) — Bel(c) = O(A\™ 1),

S4. For all (possibly empty) sequences of literals o and all p € L such that

+p does not appear in o,
Z{Zm(T) |oc C7and 7 ends +p} = A,
where A, is the term defined as follows:
A, = Z{ZO(T) | o C7and 7 ends +p'} (4.5)

where p’ is any propositional variable from L such that +p" does not appear
in 0. (It will soon be clear that this sum depends only on ¢ and not on

which particular p’ we choose.)

Once we have done this we will define our required special almost-ent z., over L™,
i.e., that almost-ent for which we hope to show Bel*~(#) = Bel(0) for all § € SL,
to be, in a sense to be explained later, the “limit” of these almost-ents. Note that,
by Lemma 4.21, for each m = 0,1, 2, ..., we can be sure z,, is a legitimate almost-
ent over Lt once we have shown that z,, satisfies S1. Another consequence of S1
is that, given a sequence of literals ¢; - - - ¢; and a sequence path ¢ € P(q; - - - ¢;),

we have & € N, (q1 - - - q;) iff 2, (0y)) > 0 iff Bel(oyz)) > 0. Hence, if we define
N(qi---q5) ={0 € Plq1---q;) | Bel(oyz) > 0},
then S1 is equivalent to saying that, for all non-empty sequences of literals ¢; - - - ¢;,

N..(¢1---q;) = N(a1- - q5)
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(and so, significantly, N,  is actually independent of m).

Zm

Let us now begin our inductive process by initially defining the almost-ent 2z

by setting, for each non-empty sequence of literals o,
zo(0) = N7 Bel (o). (4.6)

We may see straight away that properties S1 and S2 holds for m = 0 (and so,
by Lemma 4.21, 2z is a legitimate almost-ent over LT). Before moving to the
inductive stage of the process it remains to show that S3 and S4 hold for m = 0.
S4 will hold trivially once we have shown that the term A, defined in (4.5) is
independent of which propositional variable p’ we choose amongst those which do

not appear in ¢. In order to do this let us re-express A, as follows. We have

A, = {zlomp) + 2(om—p)}

where p’ is a propositional variable which does not occur in o, for definiteness
let us say p’ = pp where k < n is minimal such that p, does not occur in o, and
the sum is over all sequences of literals 7 such that, for all » € L such that +r
appears in 7 we have r # p; and +r does not appear in o. Splitting up these

sequences 7 according to length we get

+ Z {20(07”12%) + zo(0r17pk) + 20(0—T1pR) + ZO(U_‘TI_‘pk)}
{ZO(omrzpk) + zo(orire=pr) + 2zo(0m17rapk) + z0(0T1—rapy) +
+z0(0r1rapr) + 2o(0—rirapr) + 20(0 T TepE) + 20(0_‘7“1_'7“2_']%)}
+ ...
+ Z {ZO(UT?TEQ coermepy) 4 2o(orfiry e ﬁpk)}
where the first summation here is over all vy € L such that r; # p, and £r; does

not appear in o, the second summation is over all distinct r1, 7, € L such that, for
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i =1,2, r; # pr and *r; does not appear in ¢ and so on until the final summation
which is over all possible (1, €g, ..., €y,) € {0,1}™ (where m, = n — (Jo| + 1))
and all distinct ry,7r9,...,7,, € L such that, for all ¢ = 1,...,my,, 7 # pr
and +r; does not appear in ¢. Now using the fact that, for all sequences 7 ,
20(7) = ATI71 Bel(7) and repeatedly using the fact that, for all sequences 7 and
all r € L, Bel(tr) 4+ Bel(t—r) = Bel(T) we get

A, = N9 Bel(0) + a N Bel(0) + aaN"2 Bel(o) + . . . + ap, N°H™ Bel (o)
where aq,as,...,a,,, are constants. Hence we may write
Ay = N Bel(0) - P,(\) (4.7)

where P,()) is a polynomial in A\ with constant term (i.e., A\ term) 1. (This
polynomial in fact depends only on |o| but this fact will not be used in any of
the upcoming proofs.) We may now clearly see that A, is independent of p’ and

thus that S4 holds for m = 0. We also use this expression to show S3.

Lemma 4.22 Let ¢ - - - g; be a non-empty sequence of literals. Then Bel®(qy - - - q;)—
Bel(qy -+ - qj) = O(N).

Proof. For each & € P(q; ---¢;) and for each i = 1,...,1(7), we have
Z{ZO(T) | 0i-1 €7, T ends =+ ¢ where o; ends ¢;} = A,,_,

so, using our general formula (4.4) applied to zp, whilst recalling that, by S1,

Ny(qr---q;) = N(q1---qj), we get

— Z H 2o(0;)
SR Y H{z0(7) | 021 € 7, T ends % ¢ where o; ends ¢;}
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Moil=1 Bel(o;
— Z H N Bel(on) ( P> ey from (4.6) and (4.7)

Z Bel(o‘l(&.)) . )\‘ol(a)lfl(&)
Qz(N)

FEN(q1-+9;)
where Qz(\) = [[ P,,_,(\) is a polynomial in A with constant term 1. The above
summation is taken to be over all @ € N(g1---¢;)(C P(q1---g;)), however we can
equally take it to be over all @ € P(qy ---¢;) since if @ € P(q1---q;) —N(q1 - - q5)
then Bel(oy)) = 0 (by definition of N(q; ---¢;)). Hence

P Bel(oyg)) - Aowl=1@)
Bel(ai--q) = ) FEO R

FEP(q1-q;)
Now, by Proposition 4.19(iv), the only path & € P(q; ---q;) for which |oy@s)| =
[(d), is the path i{g; - - - ¢;). So, given a sequence path ¢ € P(q; - - - ¢;) such that
7 # tlqr -+ qj), we have

Bel(oyz)) - Mowa =)
Qz(A)

by Proposition 4.7(iii), since |oy#)| — [(¢) > 1 (and so the numerator is of order

= o)

O(A)) and Qz(A\) has constant term 1 (and so the denominator is not of order

O())). Hence

Bel Alowa =)
Z € (UZ( )) _ O()\)

Qz()

#5€P(q1-+q5)

and so we may write

Bel(q - - - q5) n

Bel(q -+ 1)) = ~5 05

Hence

Qi) - Bel®(q1---q5) — Bel(q1 -+ - q;) = O(})

(by Proposition 4.7(i)) and so, remembering that Qgg,...q;)(A) has constant term

1, we may see that

Bel*(qy---qj) — Bel(q1 -+ - q;) = O(\)
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as required. O

Thus we have shown that S3 holds for m = 0, thereby completing the base
stage of our inductive process. Our next step is to show how, given we have
constructed a z,, which satisfies S1-4, we may construct a new special almost-ent
Zm+1 Which also satisfies S1-4 but with m + 1 in place of m. The idea is that
we will inductively define a finite sequence of intermediate special almost-ents

Zm =20 2k 22 .. 28 = 2,11 At each stage, given that 2! | say, is the almost-

m? m? m?
ent constructed up to that point, we focus on a pair of sequences 7p and 7-p
for some sequence of literals 7 and p € L (starting with the shortest sequences
and working up to the longest) and try to obtain an O(A™"?) approximation to

Bel for both, i.e., we adjust z!,, specifically the potentials z! (7 4 p), in order to

obtain a new special almost-ent z! which will satisfy
Bel™ (1 4+ p) — Bel(r £ p) = O(A™?)

(although this adjustment will, in some cases, consist of doing nothing at all!)
Whilst we do this we must ensure that S1-4 remain satisfied for 2. and also
that we maintain O(A™"2) approximations to Bel for all the sequences that have
already been considered during this process. We continue this sub-process until
every sequence of literals has been looked at, so after the final (k'") stage we have
a special almost-ent 2,11 = 2¥ which satisfies S1-4 with m replaced by m + 1.

Since we begin by setting z2 = z,,, we have, for all non-empty sequences of
literals o,

22 (o) = 0 iff Bel(c) =0, (4.8)

20 (o) # 0 implies 22 (0) = O(AI71) and 2° (o) # O\, (4.9)

and

Bel*» (o) — Bel(o) = O(A™) (4.10)
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while for all sequences ¢ and for all p € L such that +p does not appear in o,
Z{z )]o C71and Tends +p}=A,. (4.11)

Let us recall that a consequence of (4.8) is that, for all non-empty sequences of
literals q; - - - g,
N (qi---q5) = N(qi-q)-

We shall begin by trying to improve the bound in (4.10) in the cases when o = p;
and o0 = —p;. Our actions depend on whether or not it is the case that 22 (p;) = 0
or z9 (=p;) = 0. (Note we cannot have both, since if so then, by (4.8), we would
have Bel(p;) = 0 = Bel(—p), contradicting Bel(p,) + Bel(—p1) = 1.)

Case(i): 22 (p1) =0 or 22 (—=p;) = 0.

0

m?

If one of these is true then we simply set 2z} = 20 i.e., we leave all potentials

unchanged, so, trivially, equations (4.8) - (4.11) are retained for z! in place of 22,

(and of course z}, is still an almost-ent). Furthermore we may state the following.

Lemma 4.23 If either 2° (p1) = 0 or 20 (=p1) = 0 then Bel*(p,) = Bel(p,)
and Belzgn(—'pl) = Bel(—py) (so certainly Belzm(j:pl) — Bel(£p,) = O(X™2)).

Proof. Suppose z° (p;) = 0. Then, from (4.8), we also have Bel(p;) = 0 and so

Bel»(p1) = Bel™(p;) since z}, = 22

= 0 by Lemma 4.21, since 20, satisfies (4.8)

= Bel(p1)

and

Bel*n(—p,) = 1— Bel*™(py)
= 1— Bel(p1) from the above

= Bel(—p1)
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as required. In the case that 2% (=p;) = 0 then just repeat the above, transposing

p1 with —p;. |

Hence in this case, we have our required O(A\™*2) approximations (in fact, as
it happens, an exact match) to Bel for Bel#m (£p1). Note that at this point we
have used, via Lemma 4.21, the assumption on Bel that Bel(6 A ¢) = 0 implies

Bel(¢p A0) =0 for all 0,¢ € SL. Now for our second, less straightforward, case.

Case(ii): both 20, (p1) # 0 and 22 (—p1) # 0.

Since the sequence paths for p; which are non-zero for 22, are simply all the single

element sequences & = o; where o7 ends with p; and 221(01) > 0, we have

z(01)
o o1 ;m Y {z0(T) | T ends £p;}
20,(01)>0
0
= me(lal) from (4.11)
o1 ends pj 0
20, (01)#0

Pulling out the lead term from this summation (which in this case is simply the
term in the sum for which o; = p; and which does occur in the above sum by

assumption) and setting

221(01)
T = Z a

o1 ends pjp
Z?n(gl)>07 0’175171

we get
20 _ 221<p1)
Bel*™(p1) = +T. (4.12)
Ay
Now from (4.7) we have
Ay = Py()

where Py(A) is a polynomial in A with constant term 1. Using this together with
(4.9) we have, for each sequence oy which ends in py,

zp(01)

. O(Alt=1y, (4.13)
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Hence, since o1 # p; implies |o7] > 1 for all o7 which end p; , we may note

that T = O()\). We now define the special almost-ent z!, from 22 by setting

2 (1) = 20 (1) for 7 # £p,, defining z} (p;) via the equation

m

1
Bel(py) = ) 4 7

Ay
ie.,
Zm(p1) = (Bel(p) = T) - Ay, (4.14)
and defining z! (—=p;) by the equation
Zm(701) = (2, (P1) + 2 (701)) = 20 (P1)- (4.15)

The following result provides the key to enable us to show that z! satisfies the

properties we require of it.

Lemma 4.24 If 20 (p1) # 0 and 20, (=p1) # 0 then the following are true
(i) 2 (1) = 2z (1) + ON™ 1) - 2, (p1).

(it). 2y (=p1) = 25 (=p1) + O(N™ 1) - 20 (=py).
Proof. (i). From (4.14) we get
Zm(p1) = (Bel(pr) = T) - A
whilst from (4.12) we get
2 (p1) = (Bel (p1) = T) - Ay,

Thus we have

Z (P1) _ (Bel(p) = T) - Ag
29, (p1) (Bel#n(p1) —T) - Ay
Bel(py) =T

= . 4.16
Bel'z?n (p1> -T ( )

Since we are assuming (4.10) we have

Bel™(p1) = Bel(p1) + O(A™1)
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which gives us, from (4.16),

() Bel(p)) =T
20(m)  (Bel(pr) —T) + O(A™+1) (4.17)

Now, since we are assuming z° (p;) # 0, we have Bel(p;) # 0 from (4.8). This,
together with the fact that 7' = O(\) means that we must have both Bel(p,)—T =
O(1) and Bel(p;) — T # O(\). Hence, dividing top and bottom of (4.17) by
Bel(py) — T we get

Zn(p) 1
D) o™ )
1+ Bel(py) =T
1 O™+
- - : TN\ 7 )\m—i—l
Tropm)  Shee paosTp O

= 1+00™M using Proposition 4.6.
From this we see
Zn(01) = 2 (p1) + O™ - 25, (1)

as required.

(i1). We have, from (4.15),

Zn(7P1) 2 (P1) + 2 (0p1) — 2 (1)
zp(7p1) 2, (7p1)

Hence, applying (i) obtained above to substitute for z! (p;) we obtain

Zm(Cp1)  _ zp(opn) + 0N - 25 (1)
29, (=p1) 29, (—p1)
= 1+O(>\m+1)-4zzlm((f;3)'

Now, from (4.9), we have 20 (p;) = O(1), 22 (=p;) = O(1) and 22, (=p;1) # O(N).

Hence

so, just as for p;, we have
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which gives
Zm(mp1) = 25, (2p1) + O™ - 2] (=)

as required. O

Note that Lemma 4.24 is also true in the case considered earlier where 22, (p;) =
0 or 2% (=p;) = 0. This is because in this case we have z} (£p;) = 22 (£p;) =

20 (£p1)+0-22 (£p1), and certainly 0 = O(A™)! Back to the present case where
20 (£p1) # 0 the above Lemma 4.24 directly tells us that, since, from (4.9), we
have

Zm(Ep1) = O(1) and 2, (Ep1) # O(N),

the same must also be true of z} . Hence, since all other potentials have remained
unchanged, equation (4.9) holds for z! in place of 2%. In particular, Lemma
4.24 implies that z! (+p;) # 0, so, for all sequences o, we have z} (o) = 0 iff

0

20 (o) = 0 and so equation (4.8) is also preserved for z}, (hence 2] is a legitimate

almost-ent by Lemma 4.21). To show that equation (4.11) is retained, note that,
from (4.15), we have

2 (1) + 20, (701) = 20, (p1) + 20 (—1)

and so, since z} (o) remains unchanged from z° (o) for all sequences of literals
other than +p;, we may write, for all sequences ¢ and all p € L such that £p

does not appear in o,
2 (0D) + 2y (07p) = 2 (0p) + 25, (D).
Hence we obtain, for all such ¢ and p,

Z{z )] o Cr1and 7ends £p} = Z{z )| o C7and 7 ends +£p}

— A, by (4.11) (4.18)

as required. We now show that equation (4.10) remains true.
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Lemma 4.25 If 20 (p1) # 0 and 2% (=p1) # 0 then, for all non-empty sequences
of literals q - - - q;, 2}, satisfies Bel*(qy - - - q;) — Bel(qy - - - q;) = O(A™+1).

m

Proof. Let ¢ - - - g; be a non-empty sequence of literals. Since, as we have already
shown, equation (4.8) is preserved for 2!, i.e., z} (1) = 0 iff Bel(r) = 0 for all

sequences 7, we have that

Na(qr---q;) = No(q1---q;) = N(qi -+ q5).

m

Hence we have

Bel (¢, eqy) =
1(a) 1 (0‘1)

N Z H SH{zk(7) | 051 C 7, T ends + ¢ where o; ends ¢}

GeN(q1---q5) =1

1(&) 1

= Z H Ao‘ from (4.18).

GeN(q1---q5) =1

If ¢; # #£p; then forno o € P(q; - - - ¢;) do we have 0; = p; forany i =1,...,1(7)
(since we always have |o;| > 7). Hence in this case, since z} (1) = 22 (7) for all
T # +p;, we have

Bel™ (g, - - q) = Bel™ (g, - - -q5).

(In particular, for all p; € L such that i # 1, we have Belzfln(ipi) = Bel*(£p;).
The significance of this will be explained later.)

And so, given (from (4.10)) Bel*n (1) — Bel(r) = O(X™) for all 7, we get
Bel*(qy - q;) — Bel(qy - - - q;) = O(A™1)

as required. So now suppose we do have ¢; = +p;, say ¢; = p1 (we may apply
the same reasoning if ¢; = —py, just replace p; in what follows by —p;). Then we

have
l 1(a) 1

)
Bel™(q1--q;) = Y A(a’)+ > Hm

FEN(q1---q;) 1=1 FeN(qy--q5) 1=1
o1=D1 o17p1

Q
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while similarly

1(3) 1a)
=1

0 ) 0 .
Beln(qy--q;) = Y ZZ(_OZ)+ > HZX@).

FEN (a1 i=1 i—1 FEN(ay-aj) @
71=p1 o17p1

But, for all sequence paths & for ¢;---¢;, we cannot have o, = #£p; for any
2 < i < I(0) (again since |o;| > ). Thus, for all & € P(q;---¢;) such that
o1 # p1, we have 2} (0;) = 2° (0;) for 1 < i < (). Hence

1(3)

2 20, (0) = 2 (o))
Bel* (g1 ---q;) = Z HA. + Z HT

FEN(qq-a;) =1 i—1 FEN(q1-q;) =1 i—1
1=P1 o17p1

and so
Bel*n(qy -+ q;) — Bel™m(qy - - q;) =

e 4
_ Z H Zn(03)
A,
FEN(a1-4;) i=1 Oi—1 ..
o1=p1 01=p1

(&) &)
_ Zm (P1) Z Zm (07) _ Zm (P1) Z Hzgv,(o"i)
A@ A Ao’~7 A@ . AO"f .
&‘EN(ql-»-qj)ZZQ i—1 5€N(q1““1j)1:2 i—1
01=p1 01=p1

Again, since for each sequence path & it cannot be the case that o; = +p; for any

i=2,...,1(d), we may write

’ 0 AR Hl@ 20 (03)
(Z) = s 0i—1
FeN(qq-q5) 1=2

01=p1

hip) 00" 5 H“‘“ 20 (03)

A@ . Acr',l

FEN(q1--q5) 1=2 ¢
01=p1

by Lemma 4.24

17 ()
= o > 1 X,._Z'

FEN(qy--q5) =1
g1=p1

For each & € N(qy---¢;), and for each i = 1,...,1(d) we have, from (4.9),

20 (o) = O(Aoil=1)

m
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and, from (4.7),
Ao'ifl = A‘UiillBel(ai—l) ) Po'ifl()\)

where P, ()) is a polynomial in A with constant term 1. Hence,
0

Z (O'z) YT p

ZmATr o )\leil=1-loi-al

A, ( )

and so, for each & € N(q - - - ¢g;) we have

1)

QL

i=1 Ao
Hence
1(&)
FeN(q1--q;) t=1 -
g1=p1
and so

Belzfln(ql . Qj> . Belz&<q1 .. 'Qj) — O()\erl)

Hence, since we are assuming (4.10) we get the required result.

0 . i 2
(%) _ (S inl-1-laly — o(Alel-1@) — 0(1),

94

Before moving on to the next stage it remains to show that our adjustments

have actually been successful in getting a closer approximation to Bel(p;) and

Bel(—py). In fact, as the next lemma shows, we could not have done any better.

Lemma 4.26 If 20 (p;) # 0 and 20 (—py) # 0 then Bel*=(p,) = Bel(p,) and

Bel*n(—py) = Bel(—py). (Hence it is certainly true that Bel* (£p,)—Bel(+p;) =

O(A™2).)

Proof. We have

A B 2 (01)
Bel*(p1) = Z S {zL (1 |7-ends +pi}

o1 ends pj
21, (01)>0
1
o § : Zm(0-1>
Ay
o1 ends pj
2}k (01)>0

2 (P1) Zn(01)
Ay " 2 Ay

o1 ends pjp
erL(Ul)>0 o1#£p1
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since, as we have already established, z} (p;) # 0. But z} (01) = 20 (01) for each

o1 such that o1 ends p; and o1 # py, and so

1
Belz}n(pl) — Zm(pl) —|—T
Ay

which gives, via (4.14),
Bel*™(p,) = Bel(p:)

as required. To see that we also have Bel*(—p,) = Bel(—p,) it is enough to

recall that, for any pre-ent (and hence any almost-ent) z,

Bel*(—p1) =1 — Bel*(py).

This completes case (ii) (22 (£p;1) # 0). Unfortunately, even though in both
cases (i) and (ii) described above, we have Bel*m(4p;) = Bel(%p,), it is not
necessarily the case that we will have Bel*m(4p;) = Bel®m(4p;) for all i > 2 —
future adjustments may slightly perturb Bel#m (£p1) from this value — and so the
reader should not be lulled into thinking that that is the end of the story for +p;.

Summarising up to this point, then, we have obtained, whether 20 (+p;) = 0
or not, a new special almost-ent 2} from z° which satisfies, for all non-empty
sequences of literals o,

zt (o) = 0 iff Bel(o) =0,

2} (0) # 0 implies 2} (o) = O(A9I71) and 2 (o) # O\

and

Bel*»(g) — Bel(c) = O(A™),

while for all sequences o and all p € L such that +p does not appear in o,

Z{z}n(T) |0 C 7 and 7 ends +p} = A,.
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Furthermore we now have
Bel*(£p,) — Bel(+p,) = O(N™?).

We now repeat a similar exercise for the pair +p, to obtain 22 from z!, then
repeat again for £ps to obtain z3 from 22, and so on through all the proposi-
tional variables in L. Given we are at the stage ¢ where we are focusing on the
pair +p;, and given that we are in the situation described by case (ii) above,
ie., 2i=1(£p;) # 0, we see from the proof of Lemma 4.25 that Bel*n(£p,) =

Belm 1(:I:pj) for j # i. Hence if we have already established
Bel™* (£p;) — Bel(%p;) = O(X™+?)

then this approximation will be preserved for 2! . Trivially this is also true if we
are in the situation described by case (i) (since then z/-1 = 2! ).

Now having obtained O(A\™2) approximations to Bel for all the sequences of
literals of length one, we then go through all the sequences of length two, followed
by all the sequences of length three and so on. At each stage we focus on a pair

of sequences ¢ - - - ¢g;_1¢g; and ¢ - - - ¢j_1—q; (where ¢; is a positive literal, i.e., of

I+1

m )

the form p as opposed to —p) and try and obtain a new special almost-ent, z

from the one we have formed up to that point, 2! which will give
Bel™™ (qv---qj-1 + ;) — Bel(qy -+ - ¢j1 £ ;) = O(N™2).
Whilst doing this we must try and maintain
Bel*™ (ry-+-1¢) — Bel(ry - -r,) = O(\™?)

for all the sequences r;---rs which we have already considered so at the end
of this entire process we will have order O(A™*?) approximations to Bel for all

sequences of literals.
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Let us assume, then, that we have reached the stage where we are focusing
on the pair of sequences ¢; --- £ ¢; and that the special almost-ent z!, we have

constructed so far satisfies, for all non-empty sequences of literals o
2l (o) = 0iff Bel(o) =0, (4.19)
L (o) # 0 implies 2L (o) = O(AN7I7Y) and 2! (0) # O\, (4.20)
and, for all sequences o and for all p € L such that £p does not appear in o,
Z{zfn(T) |0 C 7 and 7 ends +p} = A,. (4.21)
We also assume that, for all non-empty sequences of literals ry - - - rg,
Bel™ (ri---1s) — Bel(ry---r5) = O(A™) (4.22)
and, furthermore, that, for all non-empty sequences ry - - - r, such that s < j,

Bel#(ry -+ -r,) — Bel(r; - -1,) = O(A"™?). (4.23)

Let us assume that ¢; - - - ¢; and ¢ - - - —¢g; are the first sequences of length j that we
are considering. Our next step depends on whether or not either 2/, (q; - -+ ¢;) = 0

or 2L (¢1---—q;) = 0 (or possibly both).

Case(i): 2. (q1 - -q;) =0 or 2! (q1---—g;) = 0 (or both).

l

m?

In this case we set 27! = 2! ie., we leave all potentials unchanged. Hence
equations (4.19)-(4.23) are certainly preserved for 2zl (and of course 2! is still

an almost-ent). Furthermore we have the following:

Lemma 4.27 If either zL,(q1---q;) =0 or zL,(q1 - -~ —q;) = 0 (or both) then

m

+1

Bel™ (q1---q;) — Bel(q: - - - q;) = O(A™*?)

and

1+1
BEZZ"T <q1 . _‘Qj) — Bel(ql ... _'Qj) = O()\m+2)
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Proof. First suppose z!,(¢1 - -+ ;) = 0. Then, by (4.19), Bel(g, - --¢;) = 0. So

I+1

Bel®™ (q1---q;) = Bel qi- - q; since zit1 = 2!
q (:Zj J m

m

= 0 by Lemma 4.21, since 2!, satsifies (4.19)
= Bel(qlqj>

so certainly Bel'zw(ql o-q;) — Bel(qr - - ¢;) = O(A™?) as required.
Also

I+1 l

Bel™ (q1---—q;) = Belzin(ql e gy) since z.tt = 2!

Zl
= Belzin(ql oo qj_1) — Bel™™(q1 - - - q;)
l

= Bel™(q---q;_1) since Belzi”(% q;) =0

while

Bel(ql-—lqj) = Bel((hq]—l) _Bel(ql.q])
= Bel(q---qj-1) since Bel(q - - - ¢q;) = 0.

So

+1

Bel! (g =g5) — Bel(y -+ =g5) = Bel (i~ gj1) — Bel(qr ;1)
= O\ as required from (4.23).

In the case when 2! (g1 ---—¢;) = 0 we may just repeat the above proof, trans-

posing q; - - - q; everywhere with ¢; - - - —g;, to get the required conclusion. O

Hence in this case we have our required O(A™"?) approximations to Bel for
Bel#' (g1 ---£¢;). Note we have once again used, via Lemma 4.21, our assump-
tion on Bel that Bel(6 A ¢) = 0 implies Bel(¢ A0) = 0 for all 6, ¢ € SL. We now

describe our second case.

Case(it): both 2k (g1 -+ q;) # 0 and 2%, (q1 -+ - —q;) # 0.

In this case, noting that (4.19) gives us

Na(q1---q;) = N(q1-- - q5),
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we have

- z II e
> {2 (1) | 0421 € 7 and 7 ends + ¢; where o; ends ¢; }

FEN(q1-q5) =1
- ¥ H ) o (4.21).
FEN(q1-q5) i=1 Asi-
Now 2! (q1---¢q;) # 0 implies Bel(q; ---q;) # 0 (by (4.19)). Recall the sequence
path {q; - - - ¢;) is that sequence path ¢ € P(q; - - - ¢;) for which o; = ¢y - - - ¢; for
i=1,...,7 (sol(i{q1---q;)) = j). Since @ = ¢1 - - - q; we have that i{¢,---q;) €
N(q1 ---q;) and so the lead term must appear in the above sum. Pulling out this

term from the summation we get

=
Q
=

l ..
Belz _ Hzm/i(h Q)

i=1 q1qi— FEN(q1-q;) =1 -
F#ilq1q5)
Now setting
J—1
T 2 (01 )
1 — -1
i=1 AQI“‘Qifl
and 1) y (U
n= > 115
FEN(qy--q5) 1=1 gi-1
F#i(q1q5)
we get
!
zl Zm q “ e q
Belm(qy---q;) =T} - AU )) + T, (4.24)

Ath---q]'q

For each ¢ € N(q; ---¢;) and for each i = 1,...,1(5) we have, from (4.7),
Aoy = N1 Bel(01) - Pr (V)

where P,,_,()) is a polynomial in A with constant term 1. Using this together

with (4.20) we have that, for each ¢ € N(¢; - - - g;)

U(3)

2L (04)
m /\|Uz(a)| U&) 4.25
110 ) ( )

=1 i—1
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Hence, since (by Proposition 4.19 (iii)) |oy#)| —1(¢) > 0 for each & € N(q¢; - - - ¢;)
such that ¢ # i{q; - - - ¢;), we may note that 7o = O()). We now define the special
almost-ent z:F! by setting 2/1(0) = 2! (o) for all sequences of literals o such that

o#q - q; and 0 # qp - - g, defining 25 (g1 - - - g;) via the equation

m

o (@17 45)

Q151
and defining 2571 (q; - - - =q;) via the equation
gt (@ =) = (ol q) + 2@ ) — 20 (@ q). (427)

The following lemma plays a similar role to that of Lemma 4.24 in the case

examined earlier when we took ¢, ---¢q; = p1.

Lemma 4.28 If 2l (¢1---q;) # 0 and 2!, (q1 -+~ —q;) # 0 then the following are

true
(i). 25 @ q5) = 2h (a1 ;) + ON™ ) - 2L (o -+ - q5).

(ii). 2 (g1 =q5) = 25 (g1 =) + ON"H) - 27 (g1 -+ ;).
Proof. (i). From equations (4.24) and (4.26) we may see that

Zﬁl(QIq‘j) _ B€Z<QIQJ) _T2
2 (q---q;)  Belm(qi---q;) — T

and hence, since we are assuming (4.22), we obtain

Zl+1(Q1"'Qj) Bel(Ql"'Qj) — 1T
m = =14+ 0\, 4.28
Dl q)  Belgq) — 1) + OO (") (428)

From this we get

2 qp) =2 (@ qp) + O™ 2 (- qp)

as required.

(i1). We have, from (4.27),

I (@1 25) 2l ) + (@) — 2 (@ )

(g —gp) 2L (g1 -+ —gj)
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Hence, applying part (i) proved above to substitute for 251 (g; - - - ¢;) we obtain

o (@ o) zn(a e 2g) + O™ 2 (@ qp)
2 (qu =) 2 (q1 - —gj)

mety | Zml@ )
= 1ot el
m J

Now, from (4.20), we have z!,(q1---¢;) = ON71), 2L (g1 -+ —g;) = O(N71) and
(a1 g5) # OV). Henco
l o .. .
7m(Q1 q]) _ O(l)
Z(q1 -+ )

so, just as for q; - - - ¢;, we have

2 (g )
2 (g1 —g;)

-1 4 O()\erl)

|

which gives the result.

Note again that Lemma 4.28 holds also if 2}, (g1 ---¢;) = 0 or 2% (¢1 - - - —qj) =

0. Back to the present case of 2! (¢ --- £ ¢;) # 0 we see that, since, by (4.20),

Zn(qr--- £ ;) = O(N ") and 2, (g1 -~ £ q5) # O(X),

m

Lemma 4.28 tells us that the same must be true of z/F!. Hence, since all other

potentials have remained unchanged, equation (4.20) holds for z.1 in place of 2., .

I+1

In particular, Lemma 4.28 implies that z,;

(q1--- % ¢q;) # 0 so, for all sequences
o, we have z!71(0) = 0 iff 2! (0) = 0 and so equation (4.19) is also preserved for
241 (hence 2I*1 is a legitimate almost-ent by Lemma 4.21). To show (4.21) is

m

retained, note that, from (4.27), we have

2 g qp) + 2 q o) = 2@ qp) + 2 (@)

which ensures that, for all sequences of literals o and all p € L such that £p does

not appear in o,

l

2 (op) + 25 (o-p) = 2L, (op) + 2L, (0-)
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(since the potential given to scenarios other than s(g;--- % ¢;) has remained
unchanged). Hence, for all sequences o and all p € L such that £p does not

appear in o,
Z{Zﬁl(ﬂ |0 C7and 7 ends £p} = Z{zfn(T) |0 C 7 and 7 ends =+ p}
= A, by (4.21). (4.29)

We now show that equations (4.22) and (4.23) remain true for our new almost-

ent.

Lemma 4.29 If 2! (q1---q;) # 0 and 2! (q1 - - - —q;) # 0 then, for all non-empty
sequences of literals sequences ry - - -1y,

+1

Bel™ (ry---r5) — Bel(ry---ry) = O(A™1).
In addition, for all sequences ry---rs such that s < j,
I+1

Bel™ (ry---r5) — Bel(ry---ry) = O(AX™?).

Proof. Let ry---r, be a non-empty sequence of literals. The fact that equation

(4.19) is satisfied for 2/ means that we have

Nosa(ry--org) = N (ri--ors) = N(ry-- 7).
Hence we may write

Zfil(gi)

B Z H S{zH1(7) | 051 C 7, T ends =+ 7, where o; ends r;}

I+1(
— 2 (73) from (4.29).
) L Ag
GEN(r1--rs) i=1 ¢
Hence if for no ¢ € N(ry---rs) do we have 0; = ¢, --- £ ¢; forany i = 1,...,1(7)

then we must have

l

Bel®™ (ry---rg) = Bel*™(ry-«-rg).
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In this case we derive the required conclusion from either equation (4.22) or
equation (4.23), according to whether s < j or not. Suppose, on the other hand,
that either the sequence g;---¢q; or the sequence ¢ ---—g; appears in at least
one sequence path & € N(ry---rs). It cannot be the case that both occur, since
if ¢1---q; appears then it must be that ¢; = r;, for some 1 < 4; < s, while if
¢1 - -+ —q; also appears then we have —q; = r;, for some 1 <7 < s. Hence both
g; and —g; appear in r;---7, giving a contradiction. Let us assume that it is
¢1 - - - ¢; which appears (the same reasoning will apply if we assume it is ¢ - - - g
which appears — just replace ¢ - - - ¢; everywhere in what follows by ¢; - - - —¢;).

Then we may write

1) ()

Belzw(rl--ﬂ"s) = Z HL +

FEN(r1--75) =1 Ti-1
q1---qj appears in &
ue)
+1
Zm (Ul)
+ _m
. Ay,
GEN(rq-+7s) =1 t

q1---q; doesn’t appear in &

while similarly

GEN(r1--rs) i=1
q1---q; appears in &

i 2 (0i)
+ > 15—

GEN(r1--rs) i=1
q1---q; doesn’t appear in &

For each ¢ € N(ry---rs) for which ¢;---¢; does not appear in ¢ we have

I+1

“m

(0;) = 2L (0;) for all i = 1,...,1(5). Hence we have
Belzﬁl(rl ceeTs) — Bel*n (ry---rs) =
1)
_ 3 f[ 2 (00) _ 3 2h,(04)
GEN(r1---1Ts) =1 AO’,;,1 GEN(ry---1rs) =1 AU‘
q1---qj appears in & q1---qj appears in &
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(1(3) (&) )
I+1 l
Zm (Uz) - Zm(o-z)
U(3)
3EN(7'1"‘7'5)
q1---qj appears in & H Ao'i—l
L i=1 ),

Let ¢ € N(rq---rs) be such that ¢ ---¢; appears in &, say ¢ - --¢; = 0y where

1 <t < (). Then for such a & we have

1(5) 1)

H zi (o) — H 2 (04)

i=1 i=1 o
1(5) B
Ao'i—l
=1
t—1 ()
G @ a5) = 2@ - g5)) - Hzfn(az') : H 2 (0)
o i=1 i=t+1
N 1(5)
H AUz’—l

since zL (o) = 2!, (o) for all sequences o # ¢ - - - & g; and clearly o; # q; - £ g;

fori =1,...,t —1,t +1,...,1(5). Hence, since 25" (q1 -+ q;) — 2L (q1 - q;) =

O™+ - 2 (qy -+ ¢;) from Lemma 4.28, we get

Bel™ (11 - -17g) — Bel (11 - -14) = 3 o) ] zm(éi). (4.30)

GEN(r1--rs) =1
q1---qj appears in &

Now for each @ € N(ry ---7s) we have, from (4.25),

1)

H an(al) _ O(/\Iﬂz(aﬂ—l(‘?))‘

Hence we may see from (4.30) that we certainly have
BelP™ (ry---ry) — Belm(ry -+ -1) = O(A™1), (4.31)

Indeed if ¢y ---¢; does not appear in i{r;---rs) (the only sequence path & €

P(ry---rs) for which |oys)| — () = 0) then for each ¢ € N(ry---7,) such that
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¢1---q; appears in ¢ we have ¢ # i{ry---ry) and consequently for each such &

we must have

13)
2, (0})
L =0\
H A, (A)
i=1 v
for some y > 1 (which depends on &) Hence in this case we may strengthen (4.31)
to

Bl (ry - +r,) = Bel(ry--+r,) = O(A™2), (4:32)

If ry - - - ry is a sequence of literals such that s < j then it cannot be the case that
¢1---q; appears in i{ry---75) (since |¢;| < s for all ¢; in i{ry---75)). Hence the
above equation (4.32) holds in particular for such sequences. Combining all this
with the equations (4.22) and (4.23) we may now see that, for all sequences of

literals rq - - - 7y,
Bel®™ (ry---rg) — Bel(ry---rg) = O(/\m+1),

while for all sequences ry - - - r4 such that s < j we maintain

+1

Bel?™ (Tl e rs) — Bel(rl c 'Ts) = O()\m+2)
as required. i

Hence we have now shown that, in the case where 2! (q;--- &+ g;) # 0, all
the equations (4.19)-(4.23) remain true for our newly defined almost-ent 24!, Tt
remains to show that the changes we have made to 2! (¢ - - - & ¢;) have had the

desired effect of bringing Bel*" (qq --- £ ¢;) closer to Bel(qy - - - £ q;).

Lemma 4.30 If 2! (q1---q;) # 0 and 2., (q1 - - - —q;) # 0 then

+1

Bel#™ (q1 R q]-) — Bel(ql oo+ Qj) — O()\erQ)

Proof. We will in fact show that Belzw(ql --+qj) = Bel(g1---¢;) . Asin

the earlier situation it should not be assumed that this automatically means
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Bel#m '(ql ---q;) = Bel(qy ---¢q;) for all i > 2.
We have
Zl+1
Bel m (ql q]) =
_ ﬁ 24(o,)
B .~ 2:{,2’1+1 )| oio1 C7and 7 ends + ¢, where o; ends ¢;}
FEN(q1q;)

19 141 (0 )

P ter
- Z H A,

FEN(q1+q;) =1

j ()
_ ﬁ 2 g @) N Z 2 (ay)
. Atﬂ "qi ; AU'*l
=1 = GeN(qq - qj) =1 4

G#£(q1-q5)

and so, since 2.1 (o) = z! (o) for all sequences o # ¢;--- % ¢; and since, as

is easily seen, ¢ ---¢; appears only in the lead term (while ¢; ---—g; does not

appear at all), we have

l+1(q1 - q; )

A

+1

Belz’"( QJ> = T + T5.

q1-qj—1

Hence, from (4.26),

+1

Bel*™ (q1---q;j) = Bel(q1 - - - q;).

as required.
To show the other part of the lemma recall that for any pre-ent (and hence any

almost-ent) z we have
Bel*(qy -+ —q;) = Bel*(q1 -+~ qj—1) — Bel*(q1 - - ;).

Hence we have

+1 I+1 I+1

Bel™ (qu---~q;) = Bel(q---~q;) = (Bel™ (qu---q;-1) — Bel™ (q1---¢;)) =
—(Bel(q - -+ qj-1) — Bel(qi -+ - ¢;))
= Bel*™ (q1---qj—1) — Bel(q1 -~ - qj-1)
by the part proved above

= O(\™?) by Lemma 4.29
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as required. O

This completes our discussion of case (ii) (z!,(q1 - -+ & q;) # 0).
To summarise up to this point, then, we have created a new special almost-ent
2H from 2!, by changing (or not, as the case may be) the potentials 2!, (¢ - - -%q;).

Our new almost-ent satisfies, for all non-empty sequences of literals o,

2 (o) = 0iff Bel(o) = 0,

m

Z(0) # 0 implies 2 (o) = O(AI7Y) and 2571 (o) # O(A)

m m

and

+1

Bel™ () — Bel(o) = O(A™),

while, for all sequences o and all p € L such that p does not appear in o,

2{2”1(7') |oc C7and 7 ends £p} = A,.

m

Furthermore for all non-empty sequences o such that |o| < j we have
Bel™ (o) — Bel(o) = O(\™?)

and now also

I+1

Bel™ (qu--- £ q;) = Bel(q - £ ¢;) = O(\"*?).

We assumed in the above that ¢ --- & g; were the first sequences of literals of
length j to be considered. We may now go through each of the other pairs of
sequences 71 - - - & 7; in similar fashion. Note that, as well as retaining O(A\"*?)
approximations to Bel for all sequences of length less than j, we will retain
O(A™*2) approximations to Bel for all the sequences of length j which we have
already considered. The reason for this can be found in the proof of Lemma 4.29

where we showed that if, for any sequence ry - - - r,, we had

Bel?n(ry - -1ry) — Bel(ry -+ - 1) = O(\"?)
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then this will remain true when we change [ to [+1, provided that neither ¢; - - - g;
nor ¢ - - - —¢g; appear in the path i{ry---ry), and, given a sequence rq - - - r;, the
only sequence of length j which appears in {ry ---r;) is ry - - - r; itself.

In this way, then, we obtain O(A™*2) approximations to Bel for every sequence
of literals to finally create the special almost-ent z,,,; from z,, in such a way that
S1-4 hold when m is replaced by m + 1. Hence, by induction, S1-4 are true for
all m > 0. In other words, by way of a reminder, the following are satisfied for

allm=20,1,...

e S1. For all non-empty sequences of literals o, z,,(c) = 0 iff Bel(o) = 0.

e 52. For all non-empty sequences of literals o, z,,(c) # 0 implies z,,(0) =

O\ and z,(a) # O(\l).

S3. For all non-empty sequences of literals o, Bel*" (o) — Bel(c) = O(A™*1),

S4. For all (possibly empty) sequences of literals o and all p € L such that

+p does not appear in o,

Z{Zm<7') |0 C 7 and 7 ends +p} = A,.

Note that S1 gives us, for all non-empty sequences of literals ¢ and all m =

0,1,...,

N.,.(0) = N(o)
The preceding lemmas have also shown that, for each m = 0,1,... and each
sequence of literals o,

Zmi1(0) = 2 (0) + O - 2, (0) (4.33)

The condition S3 says that, for each sequence of literals o, the values Bel*" (o)

are getting closer and closer to Bel(o) as m gets bigger. Indeed the almost-ent
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Zso We now construct to prove Theorem 4.11 may be thought of, in a strong sense,

to be the limit of this sequence. In view of S1 and S2 we may write

o0

Zm(0) = Aot Z 20 ()N
i=0
where we use 27(2)(0) simply to denote the i'th coefficient in the above series and
where 2\ (0) = 0 implies 2 (¢) = 0 for all i > 0. For example, for m = 0 we
defined zo(c) = A“I='Bel(c). Hence zéo)(a) = Bel(o) and z(()i)(a) = 0 for all

i=1,2,...

Lemma 4.31 Let o be a non-empty sequence of literals. Then, for each m =
0,1,..., given that we may expand z, (o) as above, we have zy(,?(a) = zy) (o) for

1=0,1,...,m.

Proof. We use induction on m. For m = 0 the result is clear. Let £ > 0 and

suppose for inductive hypothesis that the result is true for m = k, i.e., that

z,(j)(a) = zi(i)(a) fori=0,1,...,k.

and so
(o) = Al {Z 2 (@)N + O Y z,(f)(a)/\i}
i=0 i=0
k
_ )\U|1{ Z](:)(O'))\’L +O()\k+1)}
=0
Hence we may see that z,(;)rl(a) = z,(f)(a) for i = 0,1,...,k and so, by inductive

hypothesis, that Z,(er(a) = zi(i)(a) for i = 0,1,...,k. Since this is clearly also
true for ¢ = k 4+ 1 we may see that the lemma is true for m = k + 1, thereby

completing the proof. O
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The above lemma says, then, that for each non-empty sequence of literals o

and for each m =0,1,...,

Zm(a):)\a_l{z,zi(i)(a))\i—i— > zf,?(a)x‘}.
=0 i=m+1

We now define the special almost-ent z,, by setting, for each ¢ a non-empty

sequence of literals,

oo

Zoo(0) = A1 Z zz-(i)(a))\i.

i=0
We now set out to show that z., is the almost-ent required to prove Theorem 4.11.
The next three lemmas describe a series of important properties of z,,. The first

of these suffices (by Lemma 4.21) to assure us that z., is indeed an almost-ent.

Lemma 4.32 Let o be a non-empty sequence of literals. Then we have zo(c) =0

iff Bel(o) = 0.

Proof. Suppose zw(0) = 0. Then zz@ (¢) =0 for all i > 0, in particular zéo)(a) =
0. As we remarked above, zéo)(a) = Bel(o) and so Bel(c) = 0. Conversely
suppose zoo(0) # 0. Then it must be that zi(i)(a) # 0 for some ¢ > 0. Hence

zi(0) # 0 and so Bel(o) # 0 from S1 as required. O

Corollary 4.33 Let o0 be a non-empty sequence of literals. Then, for each m =

0,1,..., 2eo(0) =0 iff z(c) =0 (and so N,_(0) = N,, (0) = N(o)).

Proof. Immediate from Lemma 4.32 and S1. O
Lemma 4.34 For each m = 0,1,... and for each non-empty sequence of literals
0-7

200(0) = 2 (o) + O™ - 2, (0).
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Proof. First note that if z,(c) = 0 then, by Corollary 4.33, we also have

200(0) = 0 and so the result is true. So let us assume z,(c) # 0. By Lemma

4.31, we have z.” (o) = zl-(i)(a) for i < m, hence

o0

Zm(o) = A7t er(;?(‘7>>‘i
=0
= )\t {Z:ZZ AT - Z }
=0 i=m+1
_ e {sz%w T Gy ZWW}
i—0 i=m-+1 i=m-+1
— )el-t {Z (0N 4 Z (z9(5) — zfi)(a))/\i}
i=0 i=m+1
_ xol{ sz”@—w) +0<Am“>}
=0
and so
D PERICIIN
zoo(a) _ 1=0
Aol-1 { <Z Zi(z)(a>)\z> + O()\m+1)}
i=0
z:zi(i)(a))\Z
=0

(fj O ) o)

0
Now, since we are assuming z,,(o) # 0, we have zéo)(a) = Bel(o) # 0 from S1

-
I

and so

i zl-(i)(a))\i = ) and Zz o)A # O(N).
i=0

Hence we may write

m—+1
G = L 5 where B = OOO()\—)
=0
B 1
o 1 + O()\m+1)

= 1+0(\™M)
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which gives the result. |

Lemma 4.35 For all sequences of literals o and all p € L such that +p does not

appear in o,

Z{ZOO(T) | o C 7 and T ends +p} = A,.
Proof. We will show that, for each m =0,1,...,
Z{ZOO(T) |0 C7and 7 ends +p} = A, + O\

which will suffice by Corollary 4.5. So let m be fixed. From Lemma 4.34 we have,

for each sequence 7 such that o C 7 and 7 ends +p,
2o (T) = 2 (T) + ON™Y) - 2, (7).

We have z,(7) = O(A"1=1) and so, since obviously |7| > 1 we have have z,,(7) =

O(1). Hence we certainly have
20o(T) = 2 (1) + O(N™T).
To be more accurate we have
Zoo(T) = Zm(T) + PT(X)
where P7()) is a power series in A such that P7(\) = O(A™"1). Hence

Z{zoo(r) |oc C7and 7 ends £p} =
= S {(zmlr) + P(N) | o C 7 and 7 ends +p}
= > {zu(r)| 0 C 7 and 7 ends *p}+
+> {P"(\) |0 € 7 and  ends +p}
= Y {zn(7) |0 C7and 7 ends £p}+
+O(\" )

= A, + 0O\
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from S4 as required. O
We are now finally in a position to prove Theorem 4.11.

Theorem 4.11 Given a language L = {p1,...,p,} (n > 1), if the function
Bel : SL — [0,1] is given by a standard pre-ent over L and if, for all 6, ¢ € SL,
Bel(6 N ¢) = 0 implies Bel(¢ A 0) = 0, then there exists an almost-ent z (over
a larger language than L) such that, for all § € SL, Bel*(0) = Bel(d). The

potentials of z are elements in [0, 00)™).

Proof. Given Bel we define the almost-ent z,, as in the preceding construction.

We will show that, for all non-empty sequences of literals ¢; - - - g;,

Bel*=(qy - - - qj) = Bel(q1 - - - q;).

This suffices to show the conclusion of Theorem 4.11, namely that, for all § € L,
Bel*>=(0) = Bel(0). Before that we will show that, for each m =0,1,2,...,

Bel™(q, - q;) — Bel*™(qy -+ - q;) = O\,
This will suffice since we already have, by S3, that
Bel*(qy - -+ q;) — Bel(q, - - - ¢;) = O(A™)
and so we will have that, for each m =0,1,2,.. .,
Bel™(qu---q;) — Bel(q -+~ q;) = O™

and so we must have (using Corollary 4.5) Bel*>(q;---q;) = Bel(q1---q;) as
required.
From Corollary 4.33 we have that N, _(¢1---¢;) = N(¢1---¢;). Hence we may

write

BelZOQ (ql oo q]) —
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1)
- > 1 S
> {200(7) | 051 € 7 and 7 ends =+ ¢; where o; ends ¢}

FEN(q1--g5) 1=1

- (&) 2(02)
- Z H Aa;l

FEN(q1---¢5) 1=1 !

by Lemma 4.35

while similarly (since also N, (¢1---¢;) = N(q1---¢;))

Bel*(q1---q;) =

Hence we have

Bel™(qy---q;) — Bel’™(q1- - - q;) = Z = (&) = > .

FEN(q1--q5) H AUi—l

Now for each path ¢ € N(g; - - - ¢;) we have

Qy

(&) 1)
2(07) = [[{zm(0) + 2m(0:) - O(N™)} by Lemma 4.34
=1

=1

1(&) 1(&)
= [ zm(e) + 0™ - T] 2m(00).
=1 =1

Hence
Zoo Zm m+1 i Zm(0’i>
Bel*(q1---q;) — Bel*™(q1---qj) = Z OA™™) - H As._1

GeN(q1-q5) i=1 !

= o™

as required.

Hence we have proved Theorem 4.11, i.e., that given a function Bel : SL —

[0,1] which is given by a standard pre-ent over L and which satisfies, for all

0,0 € SL, Bel(0 N ¢) = 0 implies Bel(¢ A ) = 0, there exists an almost-ent,

which we have denoted by z,, in the above proof and which was defined over a

larger language than L (namely L™), such that Bel*~(f) = Bel(0) for all § € SL.
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Unfortunately we are not yet able to say that there exists an ent which gives the
same belief values to sentences in SL, for, as we indicated earlier, the almost-ent
Zoo 18 mot an ent over LT, In fact no almost-ent over L™ which is special (according
to Definition 4.12) can be an ent over L*. To see this let s; € WL be given
by s1 = {up,,u,,} (recall we assume n > 1). Then, given a special almost-ent z,
there can be no scenario over L™ which is both awarded non-zero potential by z
and is consistent with s;. This is because, for any non-empty sequence of literals
o, the scenario s(o) contains at least one of —wu,, or —u,,. Indeed if 0 = p; - --
then —wu,, € s(0); if 0 = py - - - then -, € s(o); while if 0 = ¢ - - - for some literal
q # pi (1 =1,2) then —u,, € s(o) (i = 1,2). We will show in Section 4.7 how to
convert z,, into an ent which gives equivalent belief values to sentences in SL.

Before that, however, we show how we can dispense with using the infinitesimal

A

4.6 Stage 2 — The Potentials of 2.

So far we have established the existence of an almost-ent z,, which, given a belief
function Bel which is given by a standard pre-ent over L and which satisfies,
for all 6,¢ € SL, Bel(6 N\ ¢) = 0 implies Bel(¢ A 0) = 0, gives the same belief
values to sentences in SL as Bel (although 2z, is defined over a language L™ that
extends L). However, although the function Bel*~ is real-valued on the interval
[0,1] (at least when Bel*> is regarded as a function on SL), the potentials of
the almost-ent z,, are non-standard real numbers. Indeed, as we saw in the last
section, given a scenario s(o) over Lt where o is a non-empty sequence of literals,
the potential z,, assigns to s(o) is given by

o0

Zoo(0) = A1 Z zi(i)(a))\i

1=0
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where A is an indeterminate which may be thought of as a positive infinitesimal
and z(()O) (o) = 0 implies zo,(0) = 0. Now ideally we would like to be able to take
the potentials of z,, to be standard real numbers and this section is devoted to
showing how we may do just that. The problem amounts to showing how, by
taking A to be a small enough real number, all the power series z, (o) for all
non-empty sequences ¢ will converge. Our strategy for showing this will be to
find a sequence of real numbers 7, for £ = 0,1, ... such that, for all non-empty
sequences o, |z,(€k)(a)| < 1, and then showing that >~ 7A* converges. This

will then suffice by appealing to the following two propositions:

Proposition 4.36 (Comparison Test) Suppose Y .oja;\" and > ;2 b\ are
two power series in A such that 0 < a; < b; for alli > M (some M > 0). If
Yoo biXt converges for all |A| < R (for some real number R > 0) then so too

does Y oo a; N O

Proposition 4.37 Let Y .2, a;\" be a power series in X. If Y ;= |a;|\" converges
for all |\] < R then so too does Y ooy a;\'. ]

Henceforth, to ease clutter on notation, we shall use a;(c) to denote 2 (o).

%

We shall define the numbers 7, inductively. Note that, for £k = 0, we may take
no =1

since, for all non-empty sequences o, we know ag(c) = Bel(c). Now suppose
k > 0 and that we have found 79,71, ..., nx_1 such that, foreach7=0,1,... k—1
and for all non-empty sequences o, |a;(0)| < n;. Our task now is to find a suitable
nk. We will do this by firstly, for each [ = 1,...,n, finding a separate bound n}
for all the |ag(c)| where |o| = I. The overall bound 7, will then be gleaned from
these bounds, which will be found using a sub-inductive process. Let 1 < j < n,
then, and let us assume for the moment that we have already found numbers

N, ..., n. " such that
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lax(o)| < n; for all o such that |o| = 1.

lax(0)| < ni~" for all o such that |o| = j — 1.

Given these bounds, we will now try to find a number ni which satisfies, for all

sequences o such that |o| = 7,

jai(0)| < 1.

Let ¢ - - - gj be a sequence of literals of length j. By results in the previous section

we have
Ua)

200 (04)
Bel(q -~ q;) = Bel™(q1---q;) = Y H

FEN(q1-+q5) i=1 Ao

For each non-empty sequence of literals o we define z,(0) € IR((\)) as follows:

2:(0) )\|0'| 1 Z ai(o

1=

Recall equation (4.7) for any sequence of literals o:
A, = N Bel(o) - P,())

where P, () is a polynomial in A with constant term 1. Using these two identities

to substitute in the above expression for Bel(q; - - - ¢;) we get

)\‘02| 1Z*<02)
Bel(qy ---qj) = Z H Neiil . Bel(o;_1) - Py, ()
GEN(q1---q5) 1=1 - 7
Z Aowa =@ 1)
_ z.(0})
GEN(q1-+q5) Qs(N)- HBel 7i-1) =1

where, recall, for each sequence path & we define Qz(\) = [[ P,,_,(\). Let us
assume that Bel(q; - - - ¢;) # 0. Then we must have t{g; ---q;) € N(¢1---¢;) (by
definition of and N(q¢; ---¢;)) and so we may pull out the lead term from the

above sum and write

ze(q1) - 2e(q1q) - 2@ q5)

Bel(q: - - - q;) QAN) - TI1Bel(g -+ gi—1)

_|_
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Aloia) | -1@) 1)

iy Qz(N) - [ Bel(oi-1) 'EZ*(UD

#5€N(q1°+-q5)

(4.34)

Now for each non-empty sequence of literals r; - - -7 let us define a polynomial

Spyry(A) as follows:

1(3)
S =TT Qa0 [] Belloi)

GEN(r1-+7s)

and, for each @ € N(ry - --r,), define the polynomial RS _ (\) by

T1Ts

)
Ri.W=JI (@0 ] Beiloi)

GAPEN (r1-+15)

For each i we shall denote the i*" coefficients of S,,....(A\) and RZ _ (\) by

Sy, AW and R, (N)®. Multiplying both sides of equation (4.34) by S, ...q, ()

1T

we get

Sy (N) - Bel(gr---q5) = Ripg;(N) - zqn) - 2e(1g2) -+ 2u(a1 - q5) +

1(5)
#G5€N(q1---q5) =1

(4.35)

We now equate the k" coefficient of each side of the above formula (treated as

power series in \). The k*® coefficient of the left hand side is simply equal to
Sy MW Bel(qy -+ qy).

To find the k' coefficient of the right hand side let us begin by considering its

first term, namely,

Ry 0N - 2u(@) - 2e(qrqe) -+ 2l q)-
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The k'™ coefficient of this term is given by

> Ry, N (@) an (@) ai(a ) =

ottt Fij=k

= R, N > a (@) an(qig) - a (@ g) +
i1 i =k

+ Z Rf;l...qj(A)(iO) cai (@) - @iy (1g2) - aiy (g - q5)
igtirttij=k
G070
= Ry, (N ao(q) - ao(qraz) -+ aolqr -+ gj-1) - anlqr -+ q5) +
+ Rf;l...qj(A)(O) car(qr) - ao(q1g2) -+ - ao(qu -+~ gj—1) - ao(qu -+~ q5) +
+ R;...qj(A)(O) : Clo(fh) : ak(Qle) e 'Clo(fh T Qj—1) : ao((h T Qj) +

+ Rgl...qj()\)(o) ~ao(q1) - ao(quq2) - - - an(qr - - qj—1) - aolq - - q;) +

+ Ry N Y ai(q) - an (@) e (q - g)
ittij=k
Vi 2k

+ Z ng--q]-()‘)%) ) %(611) ) %(@hCJz) e 'aij(% e 'Qj)-
igtig+tij=k

1070

Now let us consider the second term of the right hand side of (4.35), namely,

I(3)
Z Ry () Ao 1=1@) | H 2(0y).
U#AFEN (q145) i=1

Let us denote this term by V' for the moment. For each ¢ > 0 let us define
N(qr---q5) ={0 € N(q1---¢;) | low)| — 1(5) = i}.
Note that under this definition we have
n—1
Nigq5) = N )
=0

since |oyg)| — 1(6) <n —1forall @ € P(q:---q;) (by Proposition 4.19(iii)). Let

G € N(qi---q;) be such that & # 7. Then we have that |oys)| — (7)) > 0 (by
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Proposition 4.19(iv)) and so & € N%(q; - - - g;) for some i > 0. Hence, since this
means that |oy)| — [(G) = i, the k™ coefficient of

I(3)
Ry (N Ao =1@) | Hz*<‘7i>

i=1

will be equal to the (k — i)*™® coefficient of
By [T 2l
which in turn is equal to
Z le---q]' ()\>(’LO) ’ a’il (Ul) T ail(&') (O'l(ﬁ))
i0+i1+--~+il(5):k—i

Note that this sum becomes zero when i > k. Hence the k" coefficient of the

term V' is given by
k
Z Z Z Rgl"-q]' (/\)(20) Qg (01) U aiz(a) (05(5))-
i=1 EENi(q1~-~qj) i0+i1+"'+il(3):k—i
However, since we have ¢ > n — 1 implies N'(q; - - - ¢;) = 0, we may just as well

replace the upper limit &k in the first summation by n — 1 and thus express the

k™ coefficient of V as
n—1
Z Z RZl"'Qj (A)(ZO) ' ail (01) e ail(g) (Ol(ﬁ))
=1 GeNi(q1-q;) totirt+iyz=k—i
Putting all this together we can expand (4.35) as
Sapg; N E - Bel(qr -+ q;) =
Rgl"'Qj ()‘>(0) : aO(ql) : aO(QlQQ) . 'ao(ql s Qj_1) . ak(ql .- -qj) +
+ Rgl"~qj ()\)(0) . ak<q1) . a/o(qqu) PP ao(ql “ e qul) . ao(ql . e q]) +
‘l’ Rgl"'q]' ()\)(0) . ao(ql) . ak(qqu) e ao(ql e (_Ij—l) . CLO(Q1 e q]) _l_

+ Rf;l...qj(/\)(o) cap(qr) - ao(q1qe) - - ar(qr - - qj—1) - aolqr -+ - q;) +
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- R‘Zl"“]j()\)(()) ' Z ai, (q1) - i (142) - - 'Clij(ch q;) +
’i1+---+ij:k
VI i #k

+ Z Rgl“'qj' ()\)(10) . a/i1 (ql) . aji2(q1q2) e ai]‘ (ql e q]) +
i0+i1+---+ij:k
i070

n—1

T Z Rgl'”q]‘()\)(iO) " Ay (01> e ail(g) (Ul(E))

i=1 FeNi(q1q;) i0+i1+"'+il(3):k—i

R‘Lll"'Qj()\>(0) ) a0<(h) ) CLO(Q1Q2) e 'GO(Q1 e 'C]j—l) : ak;(Ql i 'qj) =
Sgro-q; N® - Bel(q - q;) —
— R N () - ao(qug) - aolar - g1) - aolas - q5) —

_ ng--qj()\)m) cao(q) - ar(quge) - aolqr - qj—1) - aolqy -+~ @) —

_ R(L;l,__qj ()\>(0) . a0<q1) . CLO(QIQQ) .. ak(ql e Qj—l) . aO(ql e qj) —

- Rgl“‘Qj ()‘>(0) ’ Z ai (q1) - @i (q1q2) -+ - @iy (qu -+ - q5) —
i1+---+ij:k
Vi ik

N Z R‘L;l"“Ij()\)(iO) “ai, (@) - iy (q192) - " Qi (q1--q5) —
i0+i1+~»+ij:k:
i0#£0

n—1

B Z Z Rgr--qj(/\)(m caiy (01) -+ @y (01z))-

=1 GEN(q1-q;) totizttiyg)=k—i

Taking the modulus of each side and using the triangle inequality gives us

IR0 VO] Jao(a1)] - lao(@r1a2)] -~ ao(ar -~ a51)| - lan(qr -~ ;)] <
< [Speg; W@ Bel(qr -+ q5) +
+ | Rl VO - lan(@)] - lao(@rg)]| -+ - lao(qr - - @5-1)] - lao(ar -+~ q5)| +
+|RE . (NO - ao(ar)] - lar(q1a2)] -~ lao(as - q—1)| - laolar -~ ;)| +
4ot

+ |R§1---qg’()‘)(0)| “lao(q1)] - |ao(quge)| - - - |ar(qr - - 'Qj_1)\ ao(qy - - 'qj)| +



CHAPTER 4. FROM PRE-ENTS TO ENTS 122

+ R VO > an (@) - las (@) - lai (@ q)] +
i1+---+ij:k
vl i #k

D B, N i ()] lag(@a)] - lag (g q)] +

ig+ipt--t+ij=k

i07£0
n—1
+ > R0, N i, (00)] -+ s, ) (00|
i=1 FeNi(qi-q;) Potirt++iz=k—i
(4.36)
Let us abbreviate this inequality by defining the following:
G =Ry, o, (N Jao(q)] - lao(qrg2)] - - lao(aqr - - - 1)l
Hy = |Sg1q,(MN™] - Bel(qr - - q5),
Hy = |R;~~qj()\)(0)| Jar(q1)| - lao(qra2)| - - - lao(qr - - - gj—1)| - lao(qr - - ;)| +

+ Ry, s MO - Jao(q)] - lar(qrg2)] - lao(gr - -~ g;-1) - lao(qr -~ 5)| +

+ Ry (VO Jao(q)] - ao(qrge)| - - lar(ar -+~ q5-1)] - lao(qr - - g5)],

Hy=|Rg .o N1 Y s (@)l - law(@a)] - lag, (o )],

iqeei=k
vl i#k
Hi= Y Ry N Jas (1) - lai (@12)] - ai, (a1 -~ q5)]
igtigetij=k
107#0

and

n—1
Hy=Y > S R, N g (01)] - i, (01e)]-

i=1 GENi(q1-qj) fotirte+iyz=h—i

So, with these abbreviations, (4.36) becomes

where, remember, we are assuming Bel(q; - - - ¢;) # 0. At this point let us remind

ourselves that we are seeking an upper bound for the set

{|ak(o)| | o a sequence of literals of length j}.
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Thus our task now is to find an upper bound for |a(q; - - - ¢;)| which is independent
of the particular sequence q; - - - ¢; of length j which we are considering. Our next
step in this direction is to find an upper bound independent of ¢; - - - ¢; for each of
the H;’s. First of all let m be such that, for all sequences of literals r{ - - -7, and
for all @ € N(ry---ry), the degree of S,,....,(\) and the degree of each R? ., (\)
is less than or equal to m. Such an m exists since there are only finitely many
sequences 11 - - - T and, given ry - - -y, only finitely many & € N(ry---r), hence
there are only finitely many polynomials of the form S;,....,(\) and RZ .. (). For
the same reason there exists some number B such that, for all sequences rq - - - 7
and all & € N(ry---ry), we have |S,,....,(\)| < B and |R? ., (A\)?| < B for all

t=20,...,m. Hence we have
Hy = |Sgyq;(N™] - Bel(q1 -+ 45) < [Sgyq,(N)™] < B (4.38)

which takes care of Hy. Now let us look at Hy. From the definition of R! regy (A),

we have
1(a)

R, NY= 1] [ Bel(oimn)

FAFEN (q1;) | =1

(since, for each path &, Qz(\) has constant term 1) and so clearly |Rf;1mqj MO <

1. Hence, recalling that ag(c) = Bel(o) for each sequence ¢ and also that we are
assuming |ax(o)| < n}, for all o of length 1,
Ry, 0, VO - Jar(a)] - lao(qrg2)] -+ lao(ar -~ gj-1)] - lao(qr - - q5)] =
IRy ;N O Jar(qr)| - Bel(qugz) -+~ Bel(qu -+ - qj-1) - Bel(qy - - ;)
< aw(ar)|
<

Similarly we get

IA
=
ESIN

|RY0s VO] - ao(q)] - lan(@ra2)] - - - lao(qr - - - g-1)] - lao(qr - - - g)]

|Rf;1...qj(/\)(0)| “lao(q)] - lao(qrae)| -+ - lan(gr -+ - qj—1)| - lao(qr - q)| < my
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and so we may see that
Hy <+t + -+ (4.39)

(M@ <1, we have

: 7
Now, for Hs, since |Ry,...,,

Repqy M1 D an ()] - lai (@a2)] -+ lai, (a1 -+~ q5)| <
i1+t j=k
VI i £k
< Z |ai, ()] - air(q1g2)] - - |ag; (g1 -+ - ;)]
i1+t =k
VI 02k
<D M (4.40)
i1+ tij=k
VI 02k

We now make use of a slight variant of the following result:

Lemma 4.38 For each i > 0 and for any [ < n,
> M S D M T T
i1l =k—i i1 =k—i

Proof. Since 19 = 1 we have

n—I copies

Z Miy = Mg =+ My = Z Ty = Mig = Ty = Mo "+ 7o -

i14-+i=k—i i1+t =k—1

We also have

n—I copies

—
Z Miy *Mig =My =Moo+~ Mo < Z Miy " Nig iy,
i1ty =k—i i1petin=k—i

since every term which appears in the left-hand sum also appears in the right-

hand sum. This gives the result. ]

By similar reasoning to that in the proof of the above lemma we may see that

n—j copies

. /_/H
Z My = Mg - " Miy = Z My Mg =My =Moo
i tij=k i1 tij=k
vl 4,2k vl ik
< Z Mix * Mig * i,
i1+ tin=k

VI i £k
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and so, from this and (4.40), we get our bound for Hj:

Hy< > 0iy iy i (4.41)
g+ tin=k
ik

For H, we have

Y BN e (@) - lai(@a)] - lag, (a1 - 45)] =

i0+i1+m+i]‘:k

1070
k
= Z |th...qj(>\)(m)| : Z |aiy (q1)] - @iy (1g2)] - - - ai; (g1 - - q5)]
10=1 i1+---+ij=k7io

Note that, in the first summation in the above line, we may replace k as the
upper limit of that summation by any number bigger than k. This is because,
for any iy > k, there can be no 4,...,4; which sum to k — iy and so the second
summation will be empty. In particular if m > k (where, recall, m is our upper
bound on the degrees of all the polynomials S(\) and R())) then we may replace
k by m. Indeed we may also replace k£ by m in the case where m < k since we

know that R” _ (\)(©) =0 for ig > m (by the definition of m). Hence

q1°:°qj

|]EL1‘.. (A)(10)| . |ai1 (q1)| : |ai2(Q1QZ)| e |aij(Q1 Tt q])|
q q;
i0+i1+m+ij—k

i070

= D> R, N1 > an(a)] - la(@a)] - lai, (a1 45)]

=1 i1+ Fij=k—io

B Z Z Miy * Nig = i since |Rf;1,,,qj()\)(i°)| < B for all 1

=1 ’L'1+---+ij=k7’io

< B Z Z Niy = Nig = * Ny by Lemma 4.38. (4.42)

i0=1 i14-+in=k—ig

VAN

It will be more convenient, for when we come to combine the bounds for the H;’s
later on, to enlarge this bound even further by increasing the upper limit of this
last summation from m to m +n — 1. Thus we now have

H, < B i Z Niy * iy =+ N, from (4.42)

t0=1 d1+-+in=k—ip
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m—+n—1

B Y > e,

io=1 i1+ +in=k—1g

= B > Miy * iy *** T (4.43)

k—t<ii+-+in<k—1

IA

where t = m +n — 1. Finally let us consider Hs, which, we recall, is equal to

n—1

> >, > RGN - i, (00)] -+ s ) (013
i=1 GeNi(qi---q;) totiit-+iyz=k—i
Now, for each i =1,...,n — 1 and for each & € N'(q; - - - ¢;), we have

> RS,y N iy (01)] -+l (012)) | =

k—i
= Z |R§1,_,qj (/\)(i0)| : Z ‘ah (O-l)’ e |a’iz(5) (05(5)”

19=0 i1+"~+il(5):k—i—i0
m
= Y IR (V™) > |ai, (01)] -+ iy, (o))
10=0 i1+"'+il(5~)=k‘—i—i0

(4.44)

since we may replace the upper limit £ — ¢ in the above by m for exactly the
same reasons as we replaced k£ by m in a similar situation when looking at Hy.

(N)@)| < B for all ig and |a;,(0)| < n;, for any 4, < k and any

. g
Now, since |Rq1_,,q]

non-empty sequence of literals o, we then have

> IRG L (N)®)] - > i, (00)] -+ i, (o) <
10=0 ’i1+---+il(5):k7if’i0

< B Z Z My = Miys)

10=0 414tz =k—i—io

< BY. > myeom, by Lemma 4.38. (4.45)

10=0 i1+-+in=k—i—ig

Hence, combining (4.44) and (4.45) gives us, for each i =1,...,n — 1,

) > RGN - i, (01)] - - |as, ) (o)

GEN(q1-+q;) totirt+iyz)=k—i
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FENi(q1-q;) 10=0 i1+ +in=k—i—io
= B-IN'(qi--q)] ) S e,
i0=0 i1+-+in=k—i—io

where [N%(q; - - - ;)| denotes the cardinality of the set N*(q; - - - ¢;). Now N*(qy - - - ¢;)
is defined as the set of all paths o for ¢ ---¢; for which
Bel(oys)) # 0 and |0y | — 1(6) = i, and as such may be identified with a subset
of the set of all sequences ¢ = 07,..., 015 where [(F) satisfies 1 < I(7) < n
and, for each [ = 1,...,1(7), oy may be any sequence of literals, i.e., there are no
constraints on the choices of the o;’s. Clearly, since there are only finitely many
sequences of literals and since [(7) is bounded above by n, this latter set is finite,
say it has C elements. Hence |N*(q;---¢;)| < C (and note that this argument

works independently of ¢ and ¢; - - - ¢;). Hence, for each i =1,...,n —1,

Z Z |R§1"'¢1j()‘>(i0)’ ’ ‘ail (Jl)’ o |ail(5) (UZ(E))|

GEN(q1-+qj) totirt-+iye)=k—1
m
S BC : : : : 777;1 T ?7271

10=0 d14+-+in=k—i—ig

and so
n—1
DS S RD (N sy (01)] - s (1)
i=1 GeNi(qi--qj) dotirt+iyz=k—i
n—1 m
< B . (449)
i=1 i0=0 di1+-+in=k—i—ig
Now, for each ¢ = 1,...,n — 1, we have
m n—1+m
DD DR EEEr S S S S
10=0 d1+-+in=k—i—ig to=1 di1+--+in=k—ig

since every term in the first summation on the left hand side, i.e., each term of

the form

S e,

i1+ +in=k—i—ig
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appears as a term in the first summation on the right hand side. Hence

n—1 m
BCZZ Z Miy = Mipy <
=1 10=0 41++in=k—i—ig

n—1 n—14+m

<Y Y Y weem
i=1 i0=1 d1+-+in=k—io
n—1+m

= BC(n—1) > > miyeem

10=1 d1++in=k—ig

= BC(n—-1) Z Niy My, (4.47)

ke—t<iy i <k—1
And so (4.46) together with (4.47) gives us
Hs < BC(n—1) > Miy - M- (4.48)
h—t<in i <k—1
And so we now have a further upper bound (which depends at the most on k)
for each of the H;’s. Using these bounds (equations (4.38), (4.39), (4.41), (4.43),
and (4.48)) together with (4.37) we may write

G-lap(q---q;)| < Hy+Hy+ Hs+ Hy+ Hs  (from (4.37))
< BampmAm T Y e,
i1+ Fin=k
VI i#£k

+B Z Miy ** Min +

k—t<ii+-+in<k—1

+BC(n—1) > My~ i

k—t<iq+-tin<k—1

i—1
= Bttt > my i
i1+ Fin=Fk
VI iy £k

+D > Niy - M, - (4.49)

k—t<ii+--+in<k-1
where D = B(1+ C(n — 1)), a constant. Now we turn our attention to finding a

suitable lower bound for G. Recall that

G = |R;---q]~()‘)(0)| “lao(q1)| -+ lao(qr - - - gj—1)|-
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Now, since for all sequences of literals o, ag(0) = Bel(o), we have

j—1
G = |Rf;1...qj(>\)(0)| . {H Bel(q, - “%)}
=1

We also know that

1(3)
RL ., N9 = ] [ Bei(oi)

AFEN(q1-q5) | =1
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while for the sequence path (g, - - - ¢;) we have () = j and t; = ¢; - - - ¢; for each

t=1,...,7 which gives

I(2) J J—1
H Bel(1i—1) = HBel(Ch e gii1) = HBel(Ch S qj)
i=1 i=1 i=1

(remembering that Bel(()) = 1). Therefore

(@) (@)
G = H HBel(Ui,l) : HBGZ(MA)
=1

BAFEN (qiq5) | i=1

1(a)
= H H Bel(ai,l)

FeN(ai-a) | i=1

= Sgq;(N@ by definition of S,...q,(N).

Hence, substituting this expression for G in (4.49),

SN arlgr- )l < Bant+ni+- "+ Y em, +

i1+ tin=k
Vi ik

D S
k—t<ii+-+in<k—1
Let b be the minimum of the finite set
{Sy, . N | 71 -+ vy a sequence of literals}.

Then, obviously,

bolan(qia)] < Sorq, N - an(qr -+ g5)]

(4.50)
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so from (4.50)

belaw(qi--q)| < Bamp+m+-+nl "+ D myem,

i1+ +in=k
Vi ik

E—t<iqg 4t <k—1

Note that, for all sequences of literals r; - - - r,, we have

1(5)
S’/‘l"'Ts (/\)(O) == H HB@Z(O'i_l)

FEN(r1--rs) | i=1
> 0
since if N(rq---r5) # 0 then for all @ € N(rq---rs) we have Bel(o;) > 0 for
all i = 1,...,1(&) (by definition of N(ry---ry)) while if N(ry---r,) = 0 then
Sy (N)© =1 since we are adopting the convention that the empty product is
equal to 1. Hence b > 0 and so we may divide throughout the inequality (4.51)

by b to get

ar(qi-g)l < X+Yp+m+-+n)+Y > myem, +

i14+-+in=k
VI ik
+Z ) Miy i
k—t<iit--+in<k—1

where XY and Z are constants. (X = %, Y = %, Z = %) Recall that we made
the assumption that Bel(g; - --¢;) > 0 but this inequality clearly must still hold
even if Bel(q;---q;) = 0 (since, in this case, ax(q1---¢;) = 0 also). Hence we
have finally found a suitable definition for ni, namely

Moo= X+Y(tmi+otm ) +Y D mm, +

i1+ Fin=Fk
vl ik

+7Z > Niy - M, - (4.52)

k—t<iy+tin<k—1

Recall, though, that our aim is to find a single number 7, for which, for all

sequences of literals o (regardless of length) we have

|ar(o)] < g
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We may do this as follows. First let us define the abbreviations

S = Z iy =+ T,

i1+ Fin=Fk
Vi ik

and

o= S

k—t<ii+-+in<k—1
Putting j = 1 in (4.52) we see that

m=X+YS + 7235
Putting 7 = 2 in (4.52) gives us
m = X+Yn +YS, +2%;
= X+Y(X+YI, +2Z5)+ Y, + Z%;
= X+YX)+ (Y +V)I, + (YZ+ 2)%;.

In general, by a simple inductive argument, we may assert that, for each j =

1,...,n, there exist constants Xj;,Y; and Z; (which do not depend on k) such

that
no= X, + Y3+ 7,532
Let
K= s X L= e,
and let

M = max(max Z;, 1).

1<j<n

(We choose M in this way to make absolutely sure that the 7, are increasing —
a property which will be needed later.) Then, for any non-empty sequence of
literals o, we have
lag(o)] < 7l where j = |o].
1 2
— X+ YTh+ 2%

< K+ LY+ M2



CHAPTER 4. FROM PRE-ENTS TO ENTS 132

Hence this shows that we may take, for £ > 1,
e = K + LY} + M2

(with, recall, 79 = 1). Note that the actual values of K, L and M are not relevant
in the rest of this section. The important thing is to note that they are constants
which do not vary with k. And so, in our efforts to establish the convergence
of (for all non-empty sequences of literals ) the series Y - ai(c)\*, we now
turn our attention to establishing the convergence of the series Y ;o mA*. By
Propositions 4.36 and 4.37 the convergence of this latter series will then imply the
convergence of the former series. However, the convergence of Y2 np A" itself is
not immediately provable and we will, in fact, need recourse to Proposition 4.36
in several more places in the rest of this section in order to show it. The next
thing we shall do is to find a bound for 7 (for k£ > 1) in terms of 3} only. To do

this we need to know that the sequence 19, 11,72, ...is increasing.
Lemma 4.39 For each k > 1 we have nx > nj_1.

Proof. First note that K > 0 (since X; = X = % > 0 and K > X; by definition
of K) and L > 0 (since Y; =Y = § > 0 and L > Y; by definition of L) while
clearly M > 1 > 0 (by definition of AM). Hence, for k > 0,

me = K+LY, + M}

v

MY since 7; > 0 for all i (recall |a;(o)| < n; for all o)

and so LY} > 0.

= M > i M-
k—t<ii+-+in<k—1

n—1 times

Now one of the terms in the above sum will be nx_1-7 - - - 70 = 1;—1 (since ny = 1).

Hence

k—t<iy -+ tin<k—1
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v

My

> Mo since we have forced M > 1.

Hence the 7 are increasing as required. O

The next lemma will help to give us a bound in terms of 3} for 2.

Lemma 4.40 For each k > 1 and for each s > 0

D M < 25

i1 tin=k—s

Proof. We look at the three separate cases k < s, k = s and k > s.

Case (i): k <'s

In this case we have k — s < 0 and so, since for no 4, ...,%, can we have 7; +

<41, <0, we have

Z Miy -1, = 0.

i1 tin=k—s
Hence the result is proved since we certainly have 231 > 0.

Case (ii): k=s

If £ = s then

Z T Z My, =m0 =1

i tin=k—s i1+ Fin=0

and so the proof is reduced to showing that
1 <25,

But

=D e

i14-+in=k
V1 ik

v

Z Mo+ Mo since the 7); are increasing by Lemma 4.39.

i1+ +in=k
Vi 12k

= Z 1 since 1y = 1.

i1+ tin=k
vl ik

= N
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where N here is the number of possible ways of choosing iy,...,7, such that
i1+ -+ 1, = k and, for all [, i; # k. Clearly, since we are assuming k£ > 1,
N must be at least 1 (take iy = k— 1, 4o = land ¢ = 0 forl = 2,...,n —
note we also need here the assumption made at the beginning of Section 4.4 (just
after the statement of Theorem 4.11) that n > 1) and so the result is proved.
(Note that if £ = 1 then there is no possible way of choosing iy, ..., %, such that
i1+ +1i, =1land i, # 1 for all [ so ¥} = 0 in this case and the result does not
hold.)

Case (iit): k > s

In this case let us firstly set
U ={(1,...,in) |1+ +i,=k—s}
and
Uy={{i1,...,0n) | 01+ +i, =k and i; # k for all [}.
We define a function f : U; — Us by setting, for each (iy, s, ..., in_1,1,) € Uy,

.. . . <i1+$i2... i—li) ifil<k’—s
f(<Z1’Z27"'7Zn71,'ln>) = 7 Te y I'n—15y tn

<Z'1,Z'2,...,Z-n,1,lln+8> lf’ll =k —s.

Note that, in the second case in the above definition of f, if iy = k—s then i, =0
for [ = 2,...,n. In particular i,, = 0, so, since we are assuming s < k, we have
in+s = s < k. This shows that we do indeed have f({i1,...,i,)) € Us. Also
note that we are again employing the assumption that n > 1. Now let us extend

f to a function f* : U; — IR by setting, for each (i1, ...,d,) € Uy,

f+(<i1, e 7Zn>> = 77]'1 . 'njn, Where <j1, e >]n> = f(<Z17 e 72n>)

Note that, for any (i1,...,i,) € Uy, if n;, ---n;, = fT({i1,...,i,)) then

Miy = M = Mgy = N



CHAPTER 4. FROM PRE-ENTS TO ENTS 135

since i; < j; for each | = 1,...,n (by definition of f) and the n,’s are increasing
(by Lemma 4.39). Hence we have
Yo e < D i)
i1t =k—s i1t tin=k—s
and so the result will be proved if we can show
S (i i) < 25

i1+ tin=k—s
To see that this is true, note that the function f, although it is not injective, has
the property that each (ji,...,j,) € Us has at most two pre-images under f. In
fact, given (ji,...,7,) € Uz, we will have that (j1,...,7,) = f({J1 —S,...,Jn))
(as long as j; —s > 0), but, additionally, if j; = k—s and j,, = s then we will also
have (j1,...,jn) = f({J1,---,Jn — 5)). Clearly, looking at the definition of f, this
exhausts the possibilities for constructing a pre-image for (ji, ..., j,). Because f

has this property we may see that each term 7;, - --7;, appearing in X} appears

n

at most twice in the sum
> (i)
i tedin=k—s

which entails that

> (i) < 25

i tin=k—s
as required. O

Thus we have, for k > 1,

MY; = M > iy Min

k—t <1+ +in<k—1

t
= MZ Z Niy = Min

s=1 i1+-+in=k—s
t
< M) 2%, by Lemma 4.40
s=1

= 2MtY;.
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We also know, from case (ii) in the proof of Lemma 4.40, that 3; > 1. Hence,
for k > 1, we have
m = K+LY, + MY}
< (K+ L)% + MY}
< Wy,

where W = K + L 4+ 2Mt — another constant which is independent of k. Thus

we now have a bound on the 7; given in terms of ¥}. For technical reasons we

now define a new sequence 7, 7], 15, . . . from the sequence 79, 71, 12, . . . as follows:
m, = 77_12 for £ > 0.
m

Please note that in the above definition ¥ means “n; to the power k7. The usage
of the superscript k£ here should not be confused with our earlier notation where
we used nf to denote an upper bound for the set {|a;(c)| | |o| = k}. Thus we

have nj, = ny = 1 = n}, while, for £ > 1,

o=
—
T
w .
< — Z iy * Nin, since g, < WY,
n i1+ Fin=k
ik
- W L e
it tin—k 1 T
Vi i#k
= W > (4.53)
i1+ Fin=k
Vi ik

(The purpose of this “normalisation” of the series 7y, is to ensure that 7} = 1 since
this is required for the following development.) Recall that our current aim is to
prove the convergence, for some real A > 0, of the series )" .° nAF. However to
do this it will suffice to show that the series Y ;- nAF has a non-trivial radius

of convergence. This is because

S = > N,
k=0 k=0
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and so if Y2 nA" converges for all [\| < R for some radius of convergence
R > 0 then Y ;7 mA*F will converge for all [\ < n_]?'
To show the convergence of this new series we shall compare it (for the purpose

of applying Proposition 4.36) with the solution to the following formal equations:
(Wn+1)Y  mXN =W wX)" + Wn+1—W+ A (4.54)
i=0 i=0

with W the constant as defined above. Equating the constant terms on each side

gives us

(Wn+ Do =Wps +Wn+1-W

which in turn shows that

Equating the X\ coefficients on each side gives us
Wn+Dpr =W > iy ooy, + 1 (4.56)
Now

Z fiy - iy = (p1-po - po) + (po - g po) + -+ (po - pro -+ )

n times

= WAt since o = 1.

Hence (4.56) gives us
(Wn+1)p =Wnpu + 1

and so we must have

Now let us take k > 1 and equate the k'™ coefficients of each side of (4.54). We

obtain

(Wn+ D =W Z Hiy =+ i, - (4.58)
i1+ tin=k



CHAPTER 4. FROM PRE-ENTS TO ENTS 138

We may break down the sum on the right hand side here as follows:

Z fiy = B = (- o po) + (fo ~ -~ po) + -+
i1+ +in=k

+(I['LO/'LO..Mk)+ Z lulll’L’Ln

i1+u.+in:k

vl ik
= npg + E Wiy * - M, since pg = 1.
i1+ Fin=k
Vi iy£k

Substituting this into (4.58) gives

(Wn + D = Wnopy + W Z iy - i,

i1+ tin=k
Vi £k
whereby we can see that
e =W Z Py == i - (4.59)
i14Fin=k

Vi itk

Lemma 4.41 For all k=0,1,2,..., we have 1), < .

Proof. The proof is by induction on k. For k =0 and k = 1 we have ny =} =1
(by definition of the sequence n}) and also pp = g1 = 1 (from (4.55) and (4.57))
and so the result holds in these cases. Now suppose that £ > 1 and that, for

[=0,1,...,k —1, we have n; < p;. Then

me < W > n e, from (4.53)
< W Z Wiy * i, from the inductive hypothesis

= [ from (4.59).
Hence 7;, < uy as required. O
Hence, in view of Proposition 4.36, to show that the series Y .o, /A" converges

we may now switch our attention to showing that the series Y ;= y;A" has a non-

trivial radius of convergence. Let us define, for ¢ = 0,1,..., v; = ;41 and set
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TA) =02, Xt =37 1A% So we have
3" N =14 AT(N).
i=0

Clearly >, A" will have a non-trivial radius of convergence iff T'(\) has a

non-trivial radius of convergence. Substituting 7'(\) into (4.54) we get
(W +1)(1+ AT(\) = W(1+ AT\)" + Wn+1— W+ A

and so

(Wn+ D)AXT(N\) =W (i (?) )g‘T()\)z) + A

i=1
Therefore we have

Wn+1DT\) =W (Z (Z‘) Ai—lT(Ay') +WnT(\) + 1
=2
and from here we may see that
T(\) = W (Z (") AHT(A)Z) Y (4.60)
i—2 \!
Equating the constant coefficients of this identity gives

M1 = Vy = 1 (461)

while for & > 0 we have that, for each i > 2, the k' coefficient of N=1T'(\)? is

equal to the (k — i+ 1) coefficient of T'(\)* which in turn is equal to
Z Vjy » 0+ V-
Jibeetgi=k—itl
Hence equating the &*® coefficients of (4.60) for k > 0 gives us
" /n
um:ukzwz(i) S v (4.62)
=2 Jitetji=k—it+l

We next show that the v, are increasing for k£ > 0. First note that all the v are

non-zero, since

Ve = [ht1 > T by Lemma 4.41

— Z’;i by definition of 7},
1
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and this last term is clearly strictly positive. Hence, for each i = 2,...

have

2

Jite A gimk—it1

Hence we have

le...y, ZO

Ji

n
n
Ve = W (2) E Vi ==V,
i=2 Gt tji=k—it1
n
> W<2) E Vi1 Vjs
Jit+je=k—1
n
= W <2> Vip_1ly + E Vi Vi,
Jj1t+io=k—1
J#k—1, ja#0
> n
=z V-1
2

140

Now it should be clear (by considering the various other constants of which it is

composed) that W > 1 and so W(g) > 1. Hence

Vg > W(Z) Vg—1 = Vg—1

which shows the v, are increasing as required. Now, since vy = 1, we have, for

eacht=2,...,n,

E: Vjp =+ Vj, =

Jitii=k—it1

IN

it

IN

it

IN

it

it

n—i copies

——
Viy = Vi - Vo~ 10
+ji=k—i+1
E le l/]n
E Viri—2Vjp =+ " Vi
+in=k—i+1

(since the vy, are increasing)
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since each term in the summation in the preceding line appears in the summation
in this last line. And so from this together with (4.62) we get, for k > 0,

Vi < Wi(?) Z Vi, =+ Vj,
=2

Jitetn=k—1

D e (4.63)

retin=k—1

where
F:ﬂyé;(j>:WKT—%n+U)

— another constant. Now in order to establish the convergence of the series
S ooc o viA" we shall again rely on Proposition 4.36. This time, though, the series
we shall compare with will arise from a very different source.

Let A be an alphabet which consists of F' distinct letters !, ..., " together

with an additional letter p, i.e.,
A={p, ', ... +}

We form the language £ over A, inductively, as follows: starting with [ = 0 we

set
Ly = {p}

For [ > 0, having defined L;, we set
£l+1:£lU{*i91"'9n‘iE{l,...,F}, 9j€£l fOI'j:L...,n}.

Then, finally,
L=]Jc.
1=0

The reader may think of the language £ as the set of propositional sentences
built up using a single propositional variable p and a stock of F' distinct n-ary
connectives *!,... *f but written in a “Polish notation style”, i.e., without the

use of parentheses or commas and with a connective always placed to the left
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of its arguments whenever it is applied. For this reason we shall, from now on,
refer to any letter of the form ** as “a connective”. We now define a sequence of

numbers 7y, 71, T2, . . . by setting, for each k =0,1,2,.. .,

Tr = the number of distinct strings in £ in which the total number of

connectives is equal to k.

For example, for £ = 0, the only sentence which may be formed from p and using
no connectives whatsoever is the sentence “p”, i.e., the sentence consisting of just
p itself. Hence

To = 1. (4.64)
For k =1 the strings of interest will be all the strings which have the form

n

where #% is a connective chosen from our stock of n-ary connectives. Since there

are I possible choices for the letter ™ it follows that
T = F.
For k = 2 the strings will be those of the form
%12 Or1e On

where x%2 is a connective and there is precisely one occurrence of a single connec-
tive, *’* say, in the whole of ¢, ..., ¢,. Suppose first of all that this connective

occurs in ¢;. Then our string would look like

n n—1
iy i1 NN
* * p...pp...p.

Given that there are F possible choices for both ** and *%2, there are F'? possi-
bilities for the above string. Similarly if the connective *% appears in ¢, we get

another F'? possibilities, if it appears in ¢35 we get another F? possibilities, and
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so on up to *‘! appearing in ¢,. Hence the total number of strings that may be

formed just from p and two connectives is

5 = nF2.
In fact it turns out that the sequence 7y, 71, 72, . . . may be defined inductively and
that, for a general £ > 1,
T =F Z Tj** Tjn- (4.65)

Jittin=k—1
(Note that this does indeed hold for the cases k = 1 and k = 2 already considered
above.) To see this, suppose we have established 7, 71, ..., 7x_1. Now note that
the strings which may be formed in £ using k n-ary connectives must take the

form

£, -0,

where *%* is a connective, each 6; is a string in £, and the total number of
connectives appearing in the whole of 61, ..., 6, is equal to k — 1, say there are j;
connectives appearing in #,, jo connectives in 6y and so on up to j, connectives
appearing in 0,, (j; + -+ j, = k — 1). Since we have already found 7o, ..., 7%_1
we know that there are 7;, possibilities for 6; (i =1,...,n) and so, remembering
also that there are F' choices for #%, there must be a total of F'-7;, - - - 7;, choices
for our original string. Summing over all the possible distributions (ji, ..., j,) of

connectives gives the result.
Lemma 4.42 For all k=0,1,2,..., we have v < 7.

Proof. The proof is by induction on k. For k = 0 we have vy = 1 = 7y from
(4.61) and (4.64) and so the result certainly holds in this case. Now suppose
k > 0 and assume that for [ =0,1,...,k — 1 we have v; < 7;. Then

v, < F Z Vi, eV, from (4.63)

Jrtetin=k—1
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IN

F Z Tir** Tjn from the inductive hypothesis
1t bgn=k—1
= T from (4.65).

Hence v, < 7, as required. |

By Lemma 4.42 and Proposition 4.36, to show that Y ;- 14A* has a non-
trivial radius of convergence it is enough to show that Y>> 7:A\¥ has a non-trivial
radius of convergence, and it is this last series whose convergence we will now
establish directly (albeit with one more use of Proposition 4.36). We begin by

finding yet another upper bound, this time for 7,. We need the following result.

Lemma 4.43 Let k > 0 and let 6 be a string in L in which the total number of
occurrences of all connectives is equal to k. Then the number of occurrences of p

in 0 is equal to k(n — 1) + 1.

Proof. The proof is by induction on k. For k£ = 0 the only possible choice for ¢
is p itself and so the number of occurrences of p in any string in £ formed only
from p and no connectives is equal to 1 = k(n — 1) + 1 as required. So now, for
our induction hypothesis, let us assume that & > 0 and that, for all [ < k, the
number of times p occurs in any sentence formed from p and [ n-ary connectives
chosen from our stock of F' connectives is equal to I(n— 1)+ 1. Suppose now that

0 is a string in £ formed with k connectives. Then # must be of the form
Ky g

where #% is a connective, each ¢; is a string in £, and the total number of
connectives appearing in the whole of ¢4, ..., ¢, is equal to k — 1, say there are
J1 connectives appearing in ¢;, jo connectives appearing in ¢,, and so on up to
Jn connectives appearing in ¢, (j; + -+ j, = k — 1). Clearly the total number

of occurrences of p in @ is equal to the sum of the number of p’s occurring in each
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of the ¢;’s. But, by inductive hypothesis, this number is equal to

n

iji(n—l)—l—l _ ((n—l)zyg)Jrn

= (n—-1)(k—-1)+n since j1 + -+ jp=k—1

= kin—1)+1
as required. O

A corollary of this result is that, given k£ and # as in the statement, the length
of 0 is equal to kn + 1, since it equals the number of occurrences of p (which is
k(n — 1) 4 1, by the above lemma) plus the number of connectives (which is k).
Hence the set of those strings in £ which contain a total number of k connectives
taken from our stock of F' distinct n-ary connectives is a subset of the set of
all strings v of length kn + 1 from the alphabet A in which the total number
of connective is equal to k, but where those connectives occurring in v may be
distributed freely throughout v without strict adherence to the “formation rules”
of L. Hence the cardinality of this latter set, which we shall call T', serves as an
upper bound for 7. The question is, what is the cardinality |I'| of I'? To help us
find out, let us consider how we might construct a string + in order for it to be
admitted to I'. We start off by imagining ~ in its embryonic state as a sequence
of spaces numbered from 1 to kn + 1 which are each to be filled with either a
connective or the letter p. We then suppose we are given a k-tuple (x™, ... %)
of connectives, taken from our stock of F' n-ary connectives, which represents
the k£ connectives which are to appear in . To this k-tuple of connectives we
assign a k-tuple (ji,...,jx) of numbers which satisfy 1 < j; < -+ < j, <kn+1
with the intention that, for each [ = 1, ..., k, the connective ¥ should be placed
in that space in v which is numbered j;. The string v is then completed by
filling up the remaining spaces, i.e., all those spaces that are not numbered j;

for any [ = 1,...,k, with p. Now, for each tuple of connectives (x, ... x%)
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the number of strings formable in this way is equal to the number of different
ways we may choose the tuple (ji, ..., jk), i.e., the number of different ways that
these connectives may be distributed throughout . But this is simply equal
to the number of different ways of choosing a set of k£ numbers from the set

{1,...,kn+ 1} which is, of course, equal to

)

And so, given also that there are F* different choices for (%, ... *%), we get

kn+1
Il = F* .
T ( . )

Hence

o< P (Im];L 1)

c(kn+1)-kn---(kn+2—k)

= k!
kn + 1)k
< prlnt 17 (4.66)
k!
Now according to Stirling’s formula we have
k! ~V2rk kFe
ie.,
k! = Vork kFe~Fe,
where ¢, — 1 as k — oo. Substituting this into (4.66) gives us
k 1 k k
< prlbnt e (4.67)

V2rk kkey,
Now, since ¢, — 1 and v27k — oo as k — oo, we have v27k ¢, — oo as k — o0.

Hence there exists K > 0 such that

k > K implies v 27k ¢, > 1.
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Thus, from (4.67), for k > K,

Fk(kn + 1)kek
< o

_ (Fe)k(kn;1>’“
1

= (Fen)* (1+%)k. (4.68)

1 kn
li 14+ — =
i (145, ) =

and, furthermore, since the sequence (1 + ﬁ)lm is increasing for k£ = 0,1,2,.. .,

Tk

Now we know that

that
1 kn
= 14+ — k=0,1,2,...}
e sup{<+kn> | 1,2,

Hence, for all £k =0,1,2,...,
SO

< e%.
Therefore, from (4.68), for k > K we get
< en(Fen) (4.69)
Lemma 4.44 The series Y ., TeA\* has a non-trivial radius of convergence.
Proof. The geometric series

%i Fen/\
fe=

converges for all A such that [A] < 7

. Hence, from (4.69) and from Proposition
4.36, so does the series Y ;- T \F. Hence it has a non-trivial radius of convergence

as required. O
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We are now finally in a position to be able to prove the convergence of all the

series 2o (0).

Lemma 4.45 There exists a real number R > 0 such that, simultaneously, for all
sequences of literals o, the series Y g ai(0)\" (and thus also the series zo0(0) =

NFIELY S ai(@)X) converges for any [A] < .

Proof. By Lemma 4.44 the series » ;° 7;A" has a non-trivial radius of conver-
gence. Hence, using Lemma 4.42 and Proposition 4.36, so too does the series

Yoo Vi Recall that v; = pu;4q for each i = 0,1,2,... Hence, since

iﬂi/\i = Mo + Aiﬂ‘)\i,
i=0 i=0

we have that > .~ ;A" also has a non-trivial radius of convergence. Then, by
Lemma 4.41 and Proposition 4.36, the series Y ;- 7/A" must have a non-trivial
radius of convergence. As indicated earlier, this implies that the series Y~ 7; X’
has a non-trivial radius of convergence and so, since we have |a;(c)| < n; for all
sequences of literals o, the series > > |a;(0)|\* also converges non-trivially. We

conclude by Proposition 4.37. O

The above Lemma 4.45 then completes the second stage of our proof of The-
orem 4.1. It allows us to drop all reference to infinitesimals and A from the

statement of Theorem 4.11 to arrive at

Theorem 4.46 Given a language L = {p1,...,pn}, if the function Bel : SL —
[0, 1] is given by a standard pre-ent over L and if, for all0,¢ € SL, Bel(dA¢) =0
implies Bel(¢ A\ 0) = 0, then there exists a standard (i.e., whose potentials are

standard non-negative real numbers) almost-ent z (over a larger language than

L) such that, for all @ € SL, Bel?*(0) = Bel(f).

Proof. Now immediate from Lemma 4.45. We can ensure that z.. (o) € [0, 00)

by choosing A such that 0 < A\ < R where R was found in Lemma 4.45. ]
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All that needs to be done from here to achieve a proof of Theorem 4.1 is to
show how we can replace “almost-ent” in the above by “ent”. It is to this — the

final stage in our proof of Theorem 4.1 — that we turn to next.

4.7 Stage 3 — Converting 2., into an Ent

The work in the previous two sections, which together comprised the first two
stages of our proof of Theorem 4.1, has shown that, given a belief-function Bel
which was given by a standard pre-ent over the language L and which satisfied,
for all 0, ¢ € SL, Bel(0 A ¢) = 0 implies Bel(¢ A 0) = 0, there exists a standard
almost-ent zo, : SLT — [0,00) for which Bel**(0) = Bel() for all § € SL.
This almost-ent was defined over a language L+ which extended L. However,
the purpose in defining almost-ents was merely to provide a stepping stone for
showing how any such function Bel can be given by a standard ent. We showed
at the end of Section 4.5 that the almost-ent 2., failed to be an ent over L™. In
this section we complete the proof of Theorem 4.1 by showing how 2., can be
converted into an ent which will give the same beliefs as z,, to all sentences in
our original language L. This ent, which will be denoted by 9., will, like z.,, be
defined over a language which contains L, though this language will be different
from LT,

To begin with, we choose a number d € IN such that 2¢ > 2n. For each
0 < j < n, given distinct p;,,...,p;; € L and some ei,...,¢; € {0,1}, if
Bel(p;! - - pfj) # 0 then let the sets g(p;l . ~p§jp€), as the pair (p,€) ranges
over the set (L — {p;,,...,p;;}) x {0,1}, form a partition of the set {0,1}% (so
Ui S5l -+ -pilp°) = {0,1}* and S(pj; ---pip°) N S(pi} -+ -pilq’) # O implies

p° = ¢°) such that

S} -+ pip) = 0 iff Bel(pj) -~ p;p°) = 0. (4.70)

J
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If Bel(p;) - p:j) = 0 then just define S(p;! - - -ple-jpe) = () for all (p,€), so (4.70)
still holds since in this case Bel(p;! - - psze) = 0 for all (p,€). Let us now define

the language L* over which our ent y., will be defined.
L*=LU{ug, |k=1,....n; r=1,...,d}.

So L* consists of all the propositional variables in L together with a set of new
propositional variables consisting of one variable for each pair (k,r) such that
E=1,...,nand r = 1,...,d. For each non-empty sequence of literals ¢; - - - g,

we define a set of scenarios (over L*) S(q ---g;) as follows:

St g = {{ug, [P =1, d} | (er, e € Sa-a5) b

Note that we have S(q;---q;) = 0 iff S(q1---¢q;) = 0. We then define the set

T(qy---q;) for all (possibly empty) sequences of literals ¢ - - - ¢; by

T(Ql"'Qj) = S(q1) x S(qugz) x -+ % S(Ql"'%)>

(so following this definition 7'(0) = {0}). Note that we have T'(¢1---¢q;) # 0
iff S(qu---q;) # 0 foreachi=1,...,5iff S(q1---q) # 0 for each i = 1,...,5.

Hence, from (4.70) we may see that, for each sequence of literals ¢ - - - ¢;,

T(qu---q;) = 0 iff Bel(qy---q;) = 0. (4.71)

Our next step is to describe what sorts of scenarios over L* will be assigned
non-zero potential by y.. First of all, all singleton scenarios of the form {ug,}
will be assigned non-zero potential (which may be any fixed arbitrary non-zero
real number). This is to ensure that, for any scenario s € W L* not deciding a
variable wuy, € L* — L, there exists a scenario with non-zero potential (namely
{ug}) which does decide that variable and which is consistent with s. The only

other scenarios to get non-zero potential will be those of the following form, for
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each non-empty sequence of literals ¢ - - - g; such that Bel(q; ---¢;) # 0 and for
cach U = Uy, ... U €T(qr-- - qj),

—

Note in the above that, for each ¢ - - - ¢;, there will in general be several choices
for U in s(qy - - 'qj;Z]) (since it may be that |S(q;---q;)| > 1 forsomei=1,...,j
and so therefore [S(q1---¢;)| > 1). For each such scenario the potential given to

-

it by Yoo, which we shall denote by Yoo (g1 - - - q;;U), is set as follows:

L zel@ ) Zoo(q1 "~ ¢)
. . ’u — = -
Yoolar - 453th) = e T 1 1S(q1 -+ i)l

The reader may notice immediately that ye(q1 - - gj; U) is actually independent
of U. We also note that Bel (g1 ---¢q;) # 0 ensures that both the numerator and
the denominator in the above expression are non-zero. The numerator is non-zero
by Lemma 4.32 while the denominator is non-zero by equation (4.71). We now

show that y. is, unlike 2., a standard ent.
Lemma 4.47 y., is a standard ent (over L*).

Proof. We must check that, for each scenario s € W L* and for each p € L* such
that £p & s, there exists a scenario t € W L* which is consistent with s and is such
that +p € t and t has non-zero potential according to y.,. As we remarked above,
if p € L* — L then such a scenario always exists. Thus let us assume that p € L,
i.e., that p = py, where k € {1,...,n}. The scenario s will, generally speaking,
contain a mixture of, on the one hand, literals from propositional variables in
L* — L and, on the other, literals from variables in L. Let us denote the set of
literals in s from this latter group by s;. Now for each 7« = 1,...,n we define a

set of literals (over L* — L) U; as follows:

U = {ul, | ufﬂa € stU{w, | £u;, & s}

i,T
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So U; is obtained by firstly including all the literals in s which are of the form
+u;, for some r. Then, for each » = 1,...,d, if the propositional variable u; , is
not decided by s then we simply add it to the set. In this way the set U; decides

all the variables of the form u;,. We define the scenario s’ O s by
s =UU...UlU, U sy.

(So s" decides all the propositional variables in L* — L.) We shall now check
for the existence of a scenario which decides p;, has non-zero potential, and is
consistent with this larger scenario s’. This will clearly suffice since any such
scenario will also be consistent with s. Let us assume that, for each i = 1,...,n,

the d-tuple (€}, ..., €,) is such that

Now, by the construction, there is a literal ¢; from L such that Bel(q;) # 0
and (el,... €}) € S(q1), equivalently U; € S(q1) (in fact this literal will be
unique, though this does not matter for the present proof). In turn there exists
a unique literal gy from L such that Bel(qiq2) # 0 and {(€2,...,€2) € S(qqa),
equivalently Us € S(q1g2). Continuing in this way we will, eventually, arrive
at some ¢, such that ¢, = £pg, U, € S(q1---¢q,) and Bel(q,---¢q.) # 0. But
then the scenario s(qq - - - gr; (U, ... ,U,)) is consistent with ', decides p, and,
since Bel(q - -+ ¢,) # 0, has non-zero potential as required. Finally y,, is clearly

standard since z, is. O

Having established the ent-hood of y, we would now like to show that y.
gives the same belief values to sentences from SL as z,,, and hence that we can
replace almost-ent in the statement of Theorem 4.46 by ent. To help us do this,
we now examine how ¥, computes its belief in sentences consisting of a sequence

of literals ¢; ---¢; from L. From Section 4.3 we know that, for any almost-ent
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(and hence for any ent) z (over L*),

Bel(qy -+ q;) = Z H@Z(U T 2 1) (4.72)

7£,0 i=1 k<i

where the sum is over all scenario paths (over L*) ¥ = ry,...,r; which are non-
zero for z (see Definition 4.10), and the terms ©%(|J,_, 7 = 7;) are given by

Zr,

7 f i
> A2 | Upe; e Ut consistent, +¢; € t} ifri 70

(| Jre Br) =
ki 1 if r; = ().

Our first step in determining Bel¥>~ (g, - - - ¢;) is to identify the form of the scenario
paths over L* for ¢ ---¢g; which are non-zero for y,. The next lemma, which
should be compared to Lemma 4.13, will make it easier to identify which scenarios
with non-zero potential are consistent with a given scenario s(a;lj) with non-
zero potential. In all what follows, given U = (Us,....U,) € T(o) and V=
(V1,..., V) € T(r) for some, possibly empty, sequences of literals o, 7 such
that |o| < |7|, we shall write 4 C V if U; = V; for all i < |o|. We shall write

(o,U) C (7,V) to mean that ¢ C 7 and U C V.

Lemma 4.48 Let 0,7 be non-empty sequences of literals such that Bel(o) # 0 #
Bel(7), and let U € T(c) and V € T(7). Then s(o;U) U s(r; V) is consistent iff
either (o,U) C (1,V) or (r,V) C (o, U).

Proof. We suppose that 0 = ¢1---¢;, 7 = ri---1, U = (Us,...,U;) and

—

V=W,..., V). So we have
s(oyU) =U; U...UU; U{g;} and s(m:V) =V U.. .UV U {r}.

We first show the “only if” direction. Without loss of generality we assume that
j < k. We will show that (under the assumption just made) s(o;U) U s(r; V) is
consistent implies (o, L7> C (r, ]7) For eachi=1,...,7, sinceld; € S(q1---¢q;) we
have

U ={u" |r=1,...,d}

i,T
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for some (€;1,...,€.4) € S(q1 -+ ¢q), while similarly, since V; € S(ry---71;),
5i T
Vi=A{wyy |r=1,...,d}

for some (8;1,...,0;4) € S(ry---r;). Hence straight away we see that, for consis-
tency, we must have U; = V; fori =1,...,7, i.e., U C V. Tt remains to show that
o C 7. We will do this by showing, by induction on ¢, that ¢; = r; fori =1,..., .
For 7 = 1 we have

Uy ={ugy [r=1,...,d}

for some (€11,...,€14) € S(q1) and
Vi={uy |r=1,...,d}

for some (311, ...,01.4) € S(r1). But, since, as we have already said that to keep
consistency we must have Uy = V;, we must have (e11,...,€14) = (011,...,01,4)
and 5o (€11, ..., €1.4) € S(q1)NS(ry). Hence, since the sets S(p) form a partition
of {0,1}¢, it must be the case that ¢; = r; as required. Now suppose 1 < [ < j
and that, for inductive hypothesis, ¢; = r; for all © < [. We must show that
q = r;. Again we have

Z/ll = {uq”'

lr

r=1,...,d}

for some (€,1,...,€.4) € S(q1--@-1q) and

Vi={ | r=1,...,d}

L,r

for some (8,1,...,014) € S(ry---m_1m) = S(qy -+ q_1m1), and again, since U =
V;, we have (€1, ..., €.4) = (01, .., 0.4) which gives (e, 1, ..., €4) € S(q1-+ q_1q1)
N S(q---q_1m). Now Bel(q ---q_1) # 0, since otherwise we would have
Bel(q: - - - ¢;) = 0 which contradicts one of the original assumptions of the lemma.
Hence the sets S(q; - - - q_1p°), as p° varies, form a partition of {0,1}¢ and hence

we must have ¢ = r;. This completes the inductive step. Thus we have shown
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that (o,U) C (,V) which proves the “only if” direction.
To show the “if” direction, by symmetry, we need only look at the case where
(o,U) C (r,V). Then o C 7 and U C V which gives U; = V; for i = 1,...,j and

SO
(V) =V U. ..UV U{r} =l U...UU; UV U... UV U {ri}.
Hence
s(a;ﬁ) U S(T;fj) =UyU...UU; UV U... UV U{gj, 7}

Now clearly

UyU...UU; UV U.. UV,

is consistent, while ¢ C 7 implies either that ¢; = r, (if j = k) or that g,
and 7, are literals from distinct propositional variables in L (since otherwise we
would have a propositional variable occurring twice during 7). Either way the

set {q;, ¢} is consistent. Hence s(o;U) U s(r; V) is consistent as required. O

Recall (Definition 4.10(a)) that a scenario path (over L*) for a non-empty
sequence of literals ¢; - --¢; is a sequence of scenarios (over L*) § = sq,...,s;
such that (i) ¢; € s1, and (ii) for each i > 1, if ¢;41 € ngi sy, then s, = 0,
otherwise s;1 is such that ¢;11 € s;11 and ngi s Us;yq is consistent. Also recall
(Definition 4.10(b)) that such a scenario path for ¢; - - - ¢; is labelled non-zero for
Yoo 1ff Yoo assigns non-zero potential to each of the non-empty scenarios amongst
51,...,5;. To give us an idea of what the scenario paths for ¢; - - - ¢; which are non-
zero for y., look like let us now try and construct one. The following explanation
should be compared closely with the one in Section 4.5 just after Lemma 4.13, in
which we constructed a scenario path for a special almost-ent over the language
LT such as z..

Firstly the only scenarios which decide ¢; one way or the other and which

are given non-zero potential by ., are those of the form 5(01;1/71) where oy is



CHAPTER 4. FROM PRE-ENTS TO ENTS 156

a sequence of literals which ends with +¢;, Bel(oy) # 0 and Uy € T(o1). Out
of these the ones which decide ¢, positively, i.e., include g;, are those such that
o1 ends ¢;. Given that such a sequence exists and that s; is of this form, it is
clear that ¢o & s; (since ¢ is the only literal from L which is contained in s
by definition of s(al;ﬁl)). Hence s, is required to contain ¢, and be consistent
with s;. Again the only scenarios which decide ¢» one way or the other and
which are given non-zero potential by ys are those of the form s(oy;Us) where
o9 ends £qo, Bel(oy) # 0 and U, € T(oy). Of these, by Lemma 4.48, the only
ones which are consistent with s; are those such that either <01,L71> C (02,1/72)
or <02,ﬁ2> C <01,ﬁ1>, with ¢, being decided positively iff o5 ends ¢o. Hence if
g2 appears in oy, say o1 = T1qz - -+, then the only possible choice for s, (indeed
the only scenario with non-zero potential which even decides ¢o and is consistent
with s7) is 8(7'1Q2;Z/71 (|71 |+ 1)), ie., take o9 = T¢o and U, to be that tuple which
consists of just the first |71]|+ 1 entries of Ui. If G, appears in oy, say 01 = p1Qy - - -
then the only possible scenario is s(p1Gy; Ui [(|p1] + 1)) thus in this case there is
no scenario consistent with s; which decides ¢y positively. If neither ¢ nor g,
appear in o then we must have sy = 3(02;2/72) where (017?/71) C (02,2/72>, o9 ends
@2, Uy € T(03) and Bel(oy) # 0 (provided such a oy exists). Now suppose we
have found scenarios sy, ..., s; (i < j) such that | J,, sx is consistent and which
satisfy, for each k = 1,...,1, s, = s(ak;ZZk) where o}, ends with gz, Uy, € T (o)
and Bel(oy) # 0 (so gx € si). If we choose [; such that |oy,| is maximal amongst
{lox] | & =1,...,i} then, by Lemma 4.48, since | J, ., si. is consistent, we must
have (o, Uy) C (o.,U,,) for all k = 1,...,i. Clearly qiy, & Ug<i sk so we would
like to find a scenario s;;; which is consistent with ngi s, and which includes
i+1- The only scenarios which decide g;11, are consistent with (J,; s, and are
given non-zero potential by y., are those of the form s(aiH;ZJiH) where 0,1

ends :l:Qi—i-h Z/_ii+1 € T(O’i+1>, Bel(aiﬂ) 7é 0 and either <O-i+172/_ii+l> Q <Uli,Z/_{;i> or
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<Jli,b7li> C (0441,U;11); gipr being decided positively iff o;,; ends with g;41. As
above, if ¢;11 appears in 0y,, say 0;, = T;¢;+1 - - -, then the only choice for s;;; is to
take 0,11 = 7;¢;41 and Z/_I;-H = L_{}Z [(|7:| + 1), while if g;,, appears in o;, then there
is no scenario consistent with [ J k<i Sk which decides ;1 positively. If +q;,, does
not appear in o;, then we take (aiH,Z/_{;-H) to be such that (ali,L_{}i> C (041, L_I;+1>.

In summary, then, it should be clear from the above that the scenario paths

for g; - - - ¢; which are non-zero for y,, are all those scenario paths of the form

—

s(on;Uy), s(onlhy), . .., s(o;;U;)
where (o1, U), (9, U), . . ., (0, L@) conform to the following behaviour:
e (i). 0y ends with ¢; and U, € T(01).

e (ii). For i > 1, given that [; is such that |0, | is maximal amongst {|oy| |
k=1,...,i}, if ¢;41 appears in oy, say 0;, = Ti¢;41 - -, then ;41 = 7,Gi11
and Zji—l—l = Z/_ill r(’7—1| + 1) Otherwise <0-li7z/_ili> Q <O'Z‘+1,Z/_{;'+1>7 Oit+1 ends di+1

and U,y € T(0741).
e (iii). Bel(o;) #0fori=1,...,7.

It should be evident that, in fact, in such a sequence <01,ﬁ1>, . <aj,2/7j>, the
sequence o7y, ...,0; forms a n-m sequence path for ¢; - --¢; (see Definition 4.15)
which, using (iii) above with Lemma 4.32, is non-zero for z.,. Hence we may
rephrase the above and say that the scenario paths for ¢; - --¢; which are non-

zero for y., are all those scenario paths of the form

—

s(al;ljl), s(ag;ﬁg), ooy s(oU;)

where & = 04,...,0; is a n-m sequence path for ¢; - - - ¢; which is non-zero for z,

ie., o€ ]\Afzoo(ql -+ q;), and Ui, ... ,Z/_l; satisfy the following:

o (a). U € T(oy).
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e (b). For1 <i<j—1,if 0,41 C oy, then Z/?H_l = Z]lz Moir1|. Otherwise ZJZ»H

satisfies ZZZ C L_ii-i—l and L_{;-H € T(0i11).

Let us denote by X (&) the set of j-tuples (2/71, o ,L7j> which satisfy conditions
(a) and (b) above.

Hence, given a non-empty sequence of literals ¢; - - - ¢j, we now know what the
n-m sequence paths (over L*) for ¢ ---¢; which are non-zero for y., look like,
and we have established the close link between these paths and the set of n-m
sequence paths (over L) for ¢; - - - ¢; which are non-zero for z,,. The next lemma

further indicates the connection between y,, and z..

Lemma 4.49 Let 0 and T be sequences of literals such that 0 C 7 and 0 # T

and Bel(o) # 0 # Bel(t), and let U € T(c). Then

S V) = za(m) - T

Proof. By definition of y(7; 17) we have

Ry - Zoo(T)
2. welrV) = DL )

_‘\7 Euc& that _‘\_)’ Euc& that
UCV, VeT (1) UCY, VeT(T)
200(T)
= N x—=
T(7)|
where N is equal to the number of ways of choosing V such that & C V and
Ve T(7). Let us assume that 7 = ory - - - s for some s > 1 and literals ry, ..., 7.
Then

N = H|S(0r1---ri)|
i=1

and so

T(7) T(7)|

N x 2oo(7) = H|S(O’T1"'7’i>| X 2oo(7)

_ : ory--1i)| X =)
= 211|S( 1 i)l |T(U)|.HEZI|S<O'T’1~..W)|

= Zu(7) [T (o)™
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as required. O

We will now use the preceding lemma to show that y., gives the same belief
to all conjunctions of literals from over L as z.,. Thus y., gives the same belief

to all sentences in SL as z,,. This will allow us to prove Theorem 4.1.

Lemma 4.50 For all non-empty sequences of literals q, - - - q; from L we have

Proof. Tailoring equation (4.72) to fit our current situation, we may write

Bel¥>=(q - - - q;) as

Belyoo (ql [P qj) e

J
= Y > TIer (W storth) % (o)
FEN- o (q1q;) (U, U;)€X () =1 k<i

(4.73)

-

where, for each & € ]Vzoo(ql---qj), <Z/{1,...,L7j) eX(@)andi=1,...,7,

0v= (| s(ox;Uy) = s(o3;Us)) =
k<i
_ _ ?/OO(‘ZHZ/_{D _
Y AYo (T3 V) | Upe; S(ow;Ui) U s(73 V) is consistent and + ¢; € s(oy;U;)}
(since s(oy;U;) # 0)

% =1 it o, C oy,
Yoo\ O35 U
Yoo (03 Us)

if 01,4 g g;

S {yoe (T V) | {01 U ,) S (7, V), 7 ends +q;, V e T(r)}
(4.74)

where, as usual, [; is such that |o,| is maximal amongst {|ox| | £ = 1,...,i}.

Compare identity (4.74) with the formula obtained in Section 4.5 (just after
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equation 4.3) for the term ©%(|J,_, s(px) = s(pi)) for z a special almost-ent over
LT (such as z,) and p' € Nz(ql e gy):
1 if Pi - Pli_y
@Z(U s(pk) = s(pi)) = 2(p;)
k<i ’
) Y1) [ 7. 7 ends Eq)

if pr,_, C pi
(4.75)

We will show that, for each & € Nzoo((h ),

Z H@y"" U (op;Uy) L (03 U, H@Z‘X’ U ) L s(03)).

Uy ,.. ;) eX (&) = k<i k<i
This will suffice to prove the lemma since substituting this into (4.73) will give
us

Bel’>=(q1---q;) = Z H@Z“’(U s(ox) = s(07))

FERu (rgy) =L k<
as required. To prove this identity let us start by, first of all, given & € Nzw (q1---q5)
and (Zjb e ,L_{}> € X (dl) where 1 <[ < j, defining the following terms:

Agoay = 110" (U s(on;the) = s(05:24)). (4.76)

i=1 k<i

Yoo A = [T (U slon) % s(0:)).

(th,..U;)€X(3) =1 k<

We will do this by proving, by induction on m = 1,..., 7, that

Z A, gy = H @Z“’(U s(or) 2 s(ay)).
(U, Uim ) €X (& ) i=1 k<i

Starting off with the base case m = 1 we must show

> «4% =070 B s(0y)).

(Z/{1>€X(U
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The definition of A<L71> gives us
Ay = 0" (0% s(o1;Uh)),

which in turn, by (4.74) (since certainly o1 2 oq = 0), gives

A Yool01; U )
th) Z{yoo(T;l_}) | 7 ends =+ ¢, Ve T(T)}

Hence

Z ./4<Z;1> = Z A(Lﬁ) by definition of X (7 | 1)

{th)eX(&1) U €T (o1)

ym(al;al)
2 | S {yoo(T; V) | 7 ends + ¢, V € T(7)}

(4.77)

1/71 ET(O‘l

Consider the denominator in the above expression for ‘A<L71>' We may write it as

> {ye(mV) [ Tends £, VET(M)} = Y. > yul(mV)

T ends £q1 PYeT(r)

= Z Zoo(T)

7 ends £q1

(by Lemma 4.49 applied to o = ()
= Z{Zoo<7') | 7 ends £ q1}.

Lemma 4.49 also gives us

Z Yoo (01;Uh) = Zoo(01),

U, eT(o1)

Hence, plugging this information into (4.77) yields

o Zoo(01)
Z A<u1> Y {ze(7) | Tends £ q}

(th)ex(511)
= 0% s(0y)) from (4.75) as required.

Now let 1 < m < j and suppose for inductive hypothesis that

m—1
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We must show that this equation remains true when we substitute m — 1 every-
where by m. To do this let us first notice that

Z A(L_ﬁ,.u,lx_{‘m) =

(U, Um) €X (5 I m)

= Z Z A(Z;ﬁ,.l.,l;l’m)

(l/?l ,,,,, Z’?mfl> Um such that

-

- Z A i) Z ©v=( U s(ow;U) B 5(00m; Unn))

(UL s Upy—1) . _Z{im such that k<m
€X (¢ (m—1)) Uy U —1 U Y EX (G 1)
m—1
= ] e=Ws(ox) = s(e2)) > 0= (| J s(ow;Uy) ™ 5(0m; Unm))
=1 k<i Z/Ym such that k<m

<Z/711-~~’Z/7m7172/7m>€X(5" Tm)
by inductive hypothesis.

Hence our inductive step will be completed if we can show

> 0v=(| ] slon;Uhe) ™ s(om;Un)) = 07| ] s(ox) ™ 5(0m)).
R _Z:?m Sui}l that k<m k<m
Uty Um—1,Um)EX (G I m)

We must have either o, C 0y, , or o;,, , C 0,,. If the former case obtains then,

—

by definition of X (&]m), we know that U, satisfies Uy, ..., Up_1,Un) € X(3]m)
iff Uy, = U, I|om|. Also, for this particular choice of U, we have, from (4.74),

OY=( U s(op; Up) I3 s(opm;Un)) = 1.

k<m

Hence, in this case,

Z eY=( U s(opU) 23 s(opm;Uy)) = 1
_)l/?m S_l'lCh that k<m
(Uh,..Um)EX ()

= 07=(| s(on) ™ s(owm))

using the identity 4.75.

If, on the other hand, 0;,, , C o, then we must have

> 0 (| J s(ow: ) > s(om;Un)) =
N gm Sll(ih that k<m
Uy Um—1,Um )EX (T M)
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m)
), 7ends + g, VeT(r)}

‘(1 Ql

_ Yoo (Tm
2 >y (T3 V) | (01,1 Uy, 1> c <

L?m such that
Z’Il gz/{my u’meT(Um)

m—1

(4.78)

Consider the denominator in the above expression. We have

> {ye(m V) | {01, U, ) € (7,V), 7 ends g, VET(T)} =

= > > Yoo T3 V)

7 such that V such that
O1,,_1C7, T ends £gm ﬁlmflgﬁ’ l—jET(T)

_ Z Zoo(T) - [T (04, )|

7 such that
Ol _1 ST, T ends +qm

(by Lemma 4.49 (since clearly o, _, # 0))

= |T(01, )Y {2a(7) | 00, © 7, 7 ends &gy }.
Similarly by Lemma 4.49 we have

> Yoo (O Unn) = Zoo(0m) - [T, )7

Zx?m such that
ulm,1 ClUm, umeT(O'm)

Hence, plugging all this into equation (4.78), we obtain

Z O ( U s(opUp) B s(om;Uy)) =

U such that k<m

Zoo(0m) - | T (01, )|
T (o1, )™ D {z200(7) | 01,,_, €7, T ends £ gp}
Zoo(Om)
Y A%c(T) |07, © 7, Tends £qp}
= 0=(| s(ow) 23 s(owm))
k<m
from 4.75, as required.

This completes the inductive proof that, for allm =1,..., 7,

m

Yo Aggn = LU s(an) = s(e).

(Un ... Um ) EX (G | m) =1 ke<i



CHAPTER 4. FROM PRE-ENTS TO ENTS 164

In particular, putting m = j in the above, we have shown

Z Adi....) :H@%(US(%)ﬁS(Ji)),

(Ur,....U;)€X () i=1 k<i
Thus
Bel"™(q-q;) = ) > Aday
GENzo0 (q17°05) (Th,... U;)€X(F)
(from (4.73) and (4.76))
J
= > JIe=Usor) = s(a0)
FEN: o (q1--q5) =1 k<i
= Bel?> (ql R qj)
as required. O

Given the preceding lemma, we are now finally in a position to prove Theorem

4.1.

Theorem 4.1 Given a language L = {p1,...,pn}, if the function Bel : SL —
[0, 1] is given by a standard pre-ent over L and if, for all §,¢ € SL, Bel(§ A¢) =0
implies Bel(¢ A 0) = 0, then there exists a standard ent z (over a larger language

than L) such that, for all § € SL, Bel*(0) = Bel(0).

Proof. Let L = {p1,...,p,}. As pointed out at the beginning of the present
chapter (just after the statement of Theorem 4.1) if n = 1 then any function Bel :
SL — [0,1] given by a pre-ent may be given by an ent over L so assume n > 1.
Then by Theorems 4.11 and 4.46 there exists an almost-ent z,, over a language
L* which extends L for which we have, for all § € SL, Bel*=(0) = Bel(). By
Lemma 4.50 there exists an ent y, over a language L* which extends L for which

we have, for all § € SL, Bel¥=(f) = Bel*=(f). This gives the result. O

Thus we have shown in this chapter that, assuming an open-ended underlying

propositional language, if we start from the class of pre-ents and then force the
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belief functions of those pre-ents to satisfy the desirable property that, for all
sentences 6 and ¢, Bel(0 A ¢) = 0 implies Bel(¢p A §) = 0 then we are led
automatically to the class of ents. This result can be interpreted as showing that

ents are perhaps more general than they might first appear.



Chapter 5

Pre-Ents and Consequence

Relations

5.1 Introduction

The work comprised in the rest of this thesis is motivated by considering the ques-
tion of what possible notions of entailment between sentences of a propositional
language can be captured using ents or pre-ents, or what form of consequence
relation can a pre-ent or ent give rise to. In its most abstract terms a conse-
quence relation (over a given language L) is just a binary relation on SL. Indeed
we have already seen one example of such a consequence relation yielded by pre-
ents, namely the relation | studied in Section 3.4. Another example, which we
shall give (for ents only) in Section 5.2, was examined by Gladstone in [4], and
used there to characterise the class of monotonic consequence relations (i.e., the
class to which the relation FC SL x SL of classical logical consequence belongs).
The consequence relation which forms the main object of study for the next two
chapters was borne out of an attempt to characterise the more general class of

rational consequence relations (which were defined in [16]) in terms of pre-ents.

166
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As we shall see in Section 5.2 (where we shall also give a brief review of such
relations), our attempt, via the relation which we shall denote by p¢, fails and
so we are led in Section 5.3 to generalise even further by defining what we call
natural consequence relations. We define this new class of consequence relation
by a set of rules which are intended to be weakened versions of the rules for ra-
tional consequence. In Section 5.3 we show that |~ satisfies all these rules and
give some further rules which follow from this set. We also confirm that every
rational consequence relation is a natural consequence relation. In the rest of the
chapter we give another family of natural consequence relations which is different
from, though, as it turns out, closely related to, the family f~g. This family is
described in the framework of permatoms which is the subject of Section 5.4. We
give some basic results about this framework which include a characterisation
of the relation |~ from Section 3.4 in terms of permatoms. We get some good
practice in using this new framework by showing in Section 5.5 how the class of
rational consequence relations can be characterised in terms of those sequences
U= Uy, ... Uy of sets of permatoms which satisfy a certain condition of admissi-
bility. This characterisation is essentially the same as that given in [7] although
the proof is different. Finally in Section 5.6 we weaken the admissibility condition
in the hope that we may be able to characterise the more general class of natural
consequence relations in terms of a more general family of sequences U. We show
that the consequence relations p~; arising from such weakly admissible sequences
U do at least satisfy the rules for natural consequence by showing how each such
sequence gives rise to a pre-ent G (over a language which extends the language
of U) such that (on its restriction to the language of ) r~a=lvz. As we shall
see in Chapter 6, we shall encounter problems in showing that, conversely, every
natural consequence relation is given by a weakly admissible uU.

We remind the reader that, unless specified otherwise, we assume that L =
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{p1,.-- . pu}.

5.2 Pre-Ents and Rational Consequence

Rational consequence relations were defined (along with other families of conse-
quence relation) by Kraus, Lehmann and Magidor in [16] and studied extensively
by Lehmann and Magidor in [7]. The motivation for their definition came from
considering the following question: Given a propositional language L and a bi-
nary relation ~ on SL with 6 |~ ¢ having the intended interpretation “if 6 is true
then, typically, ¢ is also true”, what closure properties should |~ have given that
it corresponds to the set of beliefs (of this form) of an intelligent, rational agent
(such as ourselves!)? The list of properties that Kraus et al. arrived at will now

be given.

Definition 5.1 A rational consequence relation on L is a binary relation |~ on
SL which satisfies the following rules for all 0,¢,v € SL. (Rules of the same
form as rules (2)-(7) should be read as: from the truth of the numerator, deduce

the truth of the denominator.)

1. 0 |~ 6 (Reflexivity (REF))

MNJS’# (Left Logical Equivalence(LLE))
Op 6 o v
O v
oo Oy
0 onyg

06, ko
vorg (O

Ok o, 0
ONG 0

0o

~o

(Right Weakening(RWE))

-_R

(AND)

N

S

(Cautious Monotonicity(CMO))
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7. f :f’weﬁ;w (Rational Monotonicity(RMO))

The full justifications for these rules may be found in [16]. Here are some
more rules which can be derived from the above rules (see [16] and [7] for the

(simple) proofs), and hence are satisfied by any rational consequence relation.

Proposition 5.2 FEvery rational consequence relation |~ satisfies the following

rules:
1. % (Supraclassicality(SCL))
PRl gﬁ ! we ™9 (Cautions Cut(CC))
g Ao 2 ti 0% Bguivalence)
g Ve Zﬁ ’1/]9 “ Y Disjunctive Rationality(DR)) 0

The definition of rational consequence relations is given in a syntactic form
(i.e., as a set of rules). However, several semantic characterisations of rational
consequence relations have been provided in the literature. One of these will
be expounded (in our more general framework) in Section 5.5. Another one
(see [7], [14], though the original idea can be traced back to [1]) is given in
terms of non-standard probability functions, or, as we may call them here, \-
probability functions, where we define a A-probability function to be just like
a probability function (see Definition 2.12) except we interpret it as a function
into [0,1]™ rather than just [0,1]. According to this characterisation, a binary
relation |~C SL x SL is a non-trivial rational consequence relation iff there exists

a A-probability function F' on L such that, for all 8, ¢ € SL,

0o ifft either F(0)=0

or F(0) #0 and F(—¢ | 60) = O(N).
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(By “non-trivial rational consequence relation” we mean a rational consequence
relation for which it is not the case that 6 |~ ¢ for all 0,¢ € SL.) This rep-
resentation of rational consequence relations seems very intuitive. It says that
I~ is a (non-trivial) rational consequence relation just in case there exists some
A-probability function F' such that 6 |~ ¢ holds iff either 6 is considered totally
unbelievable by F' or the conditional probability, according to F', of —=¢ given 6
is infinitesimally small (or zero).

Note that one rule which a rational consequence relation is not required to
satisfy, at least in its full generality (since we do require the special cases of it

LLE, CMO and RMO), is the following

oy, O ¢
Sy

and indeed this is how it should be, for suppose we held the belief “if the cake

(Monotonicity)

contains butter then, typically, it will taste delicious”. If we then strengthened
the “if” clause here to “the cake contains butter and drawing pins” would we still
be willing to take a bite? Thus rational consequence relations provide examples
of non-monotonic inference relations. If we add the rule of Monotonicity to the
rules for rational consequence then we arrive (following Lemma 7.3 of [16]) at a
subclass of rational consequence relations — the class of monotonic consequence
relations. From [4] (Theorems 9 and 10) we already have a result which completely

characterises monotonic consequence relations in terms of standard ents, namely:

Theorem 5.3 Let |~ be a binary relation on SL. Then |~ is a monotonic con-

sequence relation (on L) iff there exists a (standard) ent z over L such that for

all 0,6 € SL, 0 | ¢ iff Bel*(0) = Bel*(0 A ). O

In view of this result it would be hoped that a similar characterisation in
terms of ents or pre-ents would be possible for (at least the non-trivial) rational

consequence relations (initially, we shall actually seek a characterisation in terms
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of pre-ents rather than just ents), especially if we widen our attention to A-pre-
ents and A-ents (see Section 4.2). Indeed, as a first guess, it might be expected
that the following definition, by analogy with conditional probability, would give

us what we want.

Definition 5.4 Given a (\-)pre-ent G over L, we define the consequence relation

raC SL x SL by, forall 0,¢ € SL,

0 g o iff either Bel(0) =0
Bel®(0 N\ —¢)

e
or Bel”(0) # 0 and Bel®(0)

=0

(We shall again assume that, from now on, all pre-ents and ents are in fact \-
pre-ents and A-ents.) We would now like to able to show that a given non-trivial
binary relation f~ on SL is a rational consequence relation on L iff |~ = |~¢ for
some pre-ent G over L. Note that, for arbitrary 1, x € SL, if Bel%(¢)) > 0 then

Bel® (y¥Ax) .
O S W@ZS{ S 1 Whlle

Bel®(ip N=x) - Bel®(yp A x)
Bel6(y) = BelS(@)

The relation g defined above has an equivalent formulation which we shall

find useful to keep in mind.

Proposition 5.5 For all pre-ents G over L and for all ,¢ € SL,

0 ~c o iff either Bel®(0) =0

or Bel®(=¢) = O()) for all s € WL such that s - 6 and

Ge(@, S)
Bel®(0) 7 )

Proof. The result is clear if Bel%(0) = 0, so assume Bel®(#) > 0. We have

Bel(ON-¢) 1
TBec@  ~ Bac 2 Gre)

rEOA—¢
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- BelG ZGG@ )+ D Grolsit)

= BzG ZG@@S ) - Bel®(—¢)

- z<§;§2’(;;> Bel(~¢)
sk

¥
A
7 N

Gy was) G
= - Bel% (=
; (BelG(e)) el (—¢) +
(52F2)=0(N)

~—~

5
g Ge(@as) G N
- Bel{ (-
f X (o B
(BEE)#0M)
= v+ where v = O())

If %&W = O()\) then we must have § = O()\) and so for all s such that s - 6

and Go®.s) # O(\) we must have Go0:5) - Bel%(—¢) = O(\) and so we must have

Bel®(9) Bl (0)
Belf(—¢) = O(X). If B‘jéi,f;“f’ # O()) then 6 # O()\) and so for some s such
that s -6 and gglg?s # O(\) we must have Bel%(—=¢) # O(\) as required. O

Given s F 6, the identity g@l(g’s = O(\) says that the probability that G
imagines s when called upon to imagine a scenario which decides 6 is, relative
to the probability of imagining any scenario which decides 6 positively, infinites-
imally small or zero. In other words, s is exceptional amongst those scenarios
which decide 6 positively. Thus the interpretation of g provided by the above
proposition is that ¢ should be considered a consequence of 6 iff either 6 is to-
tally unbelievable according to G or Bel®(—¢) is infinitesimally small or zero
for all those s which are “unexceptional” amongst the scenarios which decide 6
positively.

So does ¢ form a rational consequence relation? Well to start with we can

easily show the following result which shows that |~¢ satisfies the first property
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from Definition 5.1.

Theorem 5.6 Given a pre-ent G over L, the consequence relation ¢ satisfies

the rule REF.

Proof. Let § € SL. We must show 0 |~ 0. If Bel®(0) = 0 then trivially 0 |~ 0
so suppose Bel%(f) # 0. Then since = —(6 A =6) we have Bel®(=(0 A =6)) = 1

and so Bel%(6 A —0) = 0. Hence %ﬁ%m = 0 giving the result. U

Unfortunately, as the following examples show, REF is the only rule for ra-

tional consequence which v will satisfy in general.

Example 5.7 In each of the following examples we take L = {p, q,7}.

(i). Let 2! be the ent defined as follows:

{r} {p} {-p,—q} {4}
11 A A

S

1

Zs

Then we have pV —p 1 p, pV —p = qV —q, but ¢V gt p. Hence |1 fails
to satisfy LLE. Also we have r |~.1 pAq, pAqF g, but .1 q. Hence .1 also
fails to satisfy RWE.

(ii). Let 2% be the ent defined as follows:

S

{rt {-»pat {~q} {r}
1 A A2 1

2

Zs

Then we have r .2 p, 7 |~,2 ¢ but 7[t.2 p A q. Hence |2 fails to satisfy AND.

(iii). let z3 be the ent defined as follows:

S

{r} {-»r} {p.a} {~¢} {p}
1 A A A2\

3

Zs
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Then we have p |~.3 ¢, 7 |~.3 ¢, but p V r¢.s q. Hence |5 fails to satisfy OR.

(iv). let z* be the ent defined as follows:

i} {ay {r,—q} {-r}
11 A A2

S

4

Zs

Then we have p |~.1 q, p v.a m, but pAglt.a . Hence .4 fails to satisfy CMO.

(v). let 2° be the ent defined as follows:

{r} {~a} {g,—r} {r}
1 A 1 1

S

5

Zs

Then we have p |5 ¢, pht.s —r, but p Ar s g Hence |~.5 fails to satisfy
RMO.

Hence |~ fails, at least in general, to satisfy most of the rules for rational con-
sequence. However, by considering the characterisation of rational consequence
relations described earlier in terms of A-probability functions, we may see that
if Bel® turns out to be a A-probability function, equivalently (by Theorem 2.6,

which clearly remains true in our more general A-framework) if it is the case that
V0, ¢, Bel®(0 A ¢) = Bel®(p A6,

then g will turn out to be rational.

In the face of the counter-examples of Example 5.7 we are met with two
possibilities. We can either search for a different consequence relation arising
from pre-ents which hopefully does satisfy all the rules for rational consequence,
or we can persevere with g and try to establish what properties it does satisfy.
We could then maybe define a new class of consequence relation to contain those

relations which satisfy these new properties and then characterise this class in
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terms of pre-ents instead. Since the relation |vg seems, after all, to be a very

natural relation to consider, we choose here the second option.

5.3 Natural Consequence Relations

We now present a set of rules with which, we hope, we will be able to completely
characterise the family of relations . Each rule is intended to be a suitably

weakened counterpart of a rule for rational consequence.
O ¢, 0~ 6N~ AQ
(o) O

0 b 6, 060N
AT

06, 0 —pVi
O oAy
O, 0NGY
OV ¢
O oA
ONG I~

Ot =¢, 0~ —p Vi
6. P-RMO
Inorw L MO)
Note that, in the rule P-LLE above, we do need both § ~ ¢ and 06 A ¢ ~ Y A ¢

1.

(P-LLE)

(P-RWE)

(P-AND)

(P-OR)

(P-CMO)

since, as we have already remarked, it is not necessarily the case that 6~ implies
ONP~1Ap. Also note that we could equally well have replaced “O A ¢~ A ¢”
in the numerator of P-LLE by 0 A =¢ ~ 1) A —¢” since these two are equivalent in
the presence of § <~ ¢. We now show that these rules are satisfied by ¢ for G a
pre-ent over L. Note for the proof that, for all a,b € IR(()\)), if a € [0,1]™) then
a = O(X™) for some m and so if a,b € [0,1]™ and b = O(A\¥) then a < b implies

also a = O(\¥). The simple proof of this is left to the reader.

Theorem 5.8 Let G be a pre-ent over L. Then the relation |~¢ satisfies the

above rules.
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Proof. P-LLE: Suppose 6 g ¢, 0 <, and § A ¢ ~ 1 A ¢. Then Bel%(§) =
Bel® (1) and Bel®(0 A\ ¢) = Bel(y Ap). If Bel(0) = 0 then Bel® (1)) = 0 giving
Y g ¢ as required. So suppose Bel(6) # 0 # Bel% (). Then 0 g ¢ gives

BS0RY) | Bet®wno) _

'~ =Bacwy ' “Bacwy oW

again giving ¢ g ¢.

P-RWE: Suppose 0 g ¢ and 0 A ¢ <0 A1p. Then Bel9(0 A ¢) < Bel%(0 A 1).
If Bel®(0) = 0 then 6 |~ 1 trivially, so suppose Bel®(#) # 0. We have

_ BelS(OAY) . B®(0A9)

L= "Bacey =1 T Bac

Hence 0 g ¢ implies 1 — B;l:l((f(g;ﬁ ) — O(A) which, in turn, implies 1 — B;ljé@(g;ﬁ) =

O(\) as required to show 0 ¢ 1.

P-AND: Suppose 6 g ¢ and 6 g =g V1. If Bel®(0) = 0 then 0 g ¢ A1) so
suppose Bel®(#) # 0. Let s € WL be such that s - 6 and 692 £ O()). We

Bel%(0)

must show Bel%(—=(¢p A1) = O(N\). Now, for x, p € SL, we have, by definition of
~, x~piff G| = G, for all pre-ents G’ over L. Hence clearly we have that x ~ p

implies BelS(x) = BelS(p) and so, since =(¢ A 1) ~ = V =th, we may write

Beli(~(¢p Av)) = Beli(=¢ V=)
= Bel%(=¢) + Bel(¢ A=) (using Theorem 2.5(d))

= Bel{(—¢) + BelS (—(=¢ V 1))

Now Bel&(=¢) = O()) since 0 g ¢, and BelS(—(=¢ V 1)) = O()\) since
0 g —¢ Vb Hence Bel(—(¢ A1) = O()) as required.

P-OR: Suppose 0 g ¥ and =0 A ¢ g . If Bel¢(0V ¢) =0 then OV ¢ g 1), so

suppose Bel%(0V ¢) # 0. Let s € WL be such that s - 8V ¢ and g@"lﬁ’(%i}) # O(N).

We must show that BelS(—)) = O(X). Now Gyys(0, s) > 0 (by (2.1) from Section
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2.2) and so, by the inductive definition of Gy, either s =60 or s = =0 A¢. If s+ 6
then Ggyy(0,s) = Gy(0,s) > 0 so Bel®() # 0 and

Ge(@as) > G9(®’3) o G9<®73) o G9V¢(®73)
Bel€(0) = BelG(0) + BelG(-0 A ¢)  BelG(0V ¢)  Bel¢(V ¢)

Hence g"lcws # O()) and so, since 0 ~g 1, BelS(—) = O(N).
If s = =0 A ¢ then Goug(0,s) = G-grs(D,5) > 0 so Bel®(=0 A ¢) # 0 and,

similarly to the above,

G_.9A¢>((Z), S) > G9v¢>(®a 3)
BelG(=0 A ¢) ~ Bel¢(0V o)

giving Be;é?i(ewg) # O(N\) and so, since =0 A ¢ |~g 9, Bel®(—) = O()) as

required.

P-CMO: Suppose 0 g ¢ A, If Bel9(0 A ¢) = 0 then 6 A ¢ g 1 so suppose
BelS(0 A ¢) # 0. Then Bel(6) > BelG(§ A ¢) > 0 and 1 — ZLE0AOMD) _ )y,

BelC(0)
BelS((0nd) Av) _ | Bel(0 A (@A)
~ BelS(OA¢) 0 BelG(0A9)
_ Bel“(0 A (9 AY))

IN

Bel%(0)

eG I
Hence 1 — W = O(\) giving O A ¢ g 1.

P-RMO: Suppose 0 g ¢ and 0 g —¢ V 1. Since 0 g —¢ we have

Bel(0 A ——¢)  Bel®(0 A ¢)

G
Bel™(#) > 0 and Belo(0) ~  Ba(0)

# O(N).

Hence Bel“(0 A ¢) > 0. Let a € IR be such that a > 0 and B;l ZGQ(Q;M > a (such

an a must exist since otherwise we would have B;lelée(g;b) = O())). Then

Bel“((0A¢) A=) Bel“(OA (o A=) Bel(0 A (=0 V1))
BelG(0 A ¢) B BelG(0 A ¢) B BelG(0 A ¢)
BelG (0 A =(=¢ V1))

- a Bel%(0)
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which is of order O(\) since 0 |~g —¢ V 1. Hence % = O(\) giving

0AS b . o
We now make the following definition.

Definition 5.9 A natural consequence relation on L is a binary relation on SL

which satisfies the six properties from Theorem 5.8 together with REF.

Theorem 5.10 Given a pre-ent G over L, the consequence relation g forms a

natural consequence relation on L.
Proof. This is simply Theorems 5.6 and 5.8. O

The following lemma gives some rules which follow from the rules of natural

consequence. They will be useful in some of the upcoming proofs.

Lemma 5.11 Let |~ be a natural consequence relation on L. Then |~ satisfies

the rule SCL from Proposition 5.2 and also following rules:

L % (Left G-Equivalence (LGE))
2 m% (Conditionalisation (CON)
7 eve(;fzmve (4)

o P )

Proof. To show SCL suppose 6 = ¢. Then 6 ~ 0 A ¢ (see Theorem 3.7). Hence
ONO~OSON

and so @ A0 0 A ¢. Also 0 |~ 0 by REF and so by P-RWE, 0 |~ ¢ as required.
To show |~ satisfies LGE suppose 0 |~ 1 and 8~ ¢. Then 0~ ¢. Also A~ A
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and so O A ~ ¢ A1 giving ¢ |~ ¢ by P-LLE.
To prove CON suppose 0 A ¢ |~ 1. Since ¢ A ~ ¢ A (= V 1) (by Proposition
3.2(s)) we have

ONGNY~ONGA(mdV 1))
which gives 0 A A RO A ¢ A (=g V). And so, by P-RWE, O A ¢ |~ —=¢ V 9.
Using this together with P-OR and —(6 A ¢) A (8 A =) |~ ¢ V ¢ (an instance of
SCL proved above) gives (0 A ¢) V (0 A =) |~ —¢ V 1 and the conclusion follows
from P-LLE, since

(OAG)V (O A=) 0N (&Y —6) 0
and

(@A) V(ON=G)N(=p V) ~ OAN(GV—¢)A(=p V)
~ ON (20 V ) A (mp V)
~ ON(=9V (9 AY))
~ 0N (=0 V).

To prove (A) suppose 6 V ¢ |~ 6. We have

0 ~ OV (-0ANYANG)
~ 0V (Y AD)
~ (OVY)AN (V)

~ (OVY)AG.

Hence, by Proposition 3.6, (0 V@) NG~ (0V @) A (V) A0 and so (0V @) AE
OV @) A0V 1)) A6 which gives OV ¢ |~ (0 V1)) A0 by P-RWE with 6V ¢ |~ 6.
From this and P-CMO we get (6 V ¢) A (6 V1) p~ 6 and the conclusion follows

from this and LGE proved above.
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To prove (B) suppose 6 V (¢ A1) ~ =6. Then, by LGE, (6 V ¢) A (0 V ) |~ —6.
From this and CON proved above we obtain 6 V ¢ |~ —(0 V ¢) V =6 and the
conclusion then follows from P-RWE;, since

(OVY)V =0 ~ (m0A )V -6

S G AVE A WA CAVESTIAVEST)! from Proposition 3.2(q)

A AT
~ b
and so, via Proposition 3.6, (6 V ¢) A (=(0V 1Y) vV =0) K(0V ¢) A 0. O

Note that we also have 6 |~¢ implies 6 |~ ¢ for any natural consequence
relation, i.e., any natural consequence relation extends [~. This follows from SCL
and the fact that - extends <.

As expected, natural consequence relations are more general than rational

consequence relations as we shall now show.

Theorem 5.12 Fvery rational consequence relation on L is a natural conse-

quence relation on L.

Proof. Let ~ be a rational consequence relation on L. We must check that

satisfies each rule for natural consequence. |~ satisfies REF by definition.

P-LLE: Suppose 6 |~ ¢, 0~ and O A p <~ A¢. Since = extends ~, from 6~ ¢
we get § = 1) and so by LLE for |~ we get 1 |~ ¢ as required.

P-RWE: Suppose 0 |~ ¢ and 0 A ¢ |0 A 1. Since b extends |~ we have that
ON P RO N givesus O Ao O A1), equivalently A ¢ F1b. Hence O A ¢ |~ ¢ by
SCL and so we conclude 6 |~ 1) by CC (see Proposition 5.2) with 6 |~ ¢.

P-AND: Suppose 0 |~ ¢ and 6 |~ —¢ V 9. Then, by AND, 0 |~ ¢ A (—¢ V ) so
0 |~ ¢ A by RWE as required.
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P-OR: Suppose 0 |~ ¢ and =0 A ¢ |~ . Then, by OR, 6 V (=0 A ¢) |~ ¢ and so,
by LLE, 0V ¢ |~ ¢ as required.

P-CMO: Suppose 0 |~ ¢ A1p. Then 6 |~ ¢ and 6 |~ 1» by RWE. So § A ¢ |~ ¢ by
CMO as required.

P-RMO: Suppose 0 ¢ —¢ and 0 |~ =¢ V . Then § A ¢ |~ —=¢ V b by RMO. Also
OAG I~ by SCL 50 OAG v ¢ A (=6 V1) by AND and then 6 A ¢ |~ ¢ by RWE

as required. O

As can be seen from Examples 5.7 the converse to Theorem 5.12 is false. The
fact that all the rules for natural consequence are sound for rational consequence
relations can at least be seen as an indication of their reasonableness for an
intelligent agent.

Recall that our aim now is to try and characterise our newly-defined class
of natural consequence relations in terms of the family of relations |~g. By
Theorem 5.10 we know that the rules for natural consequence are sound for .
Hence it remains to show that those rules are also complete for g, i.e., that
any binary relation on SL which satisfies those rules is given by |~ for some
pre-ent G over L. This representation theorem we seek for natural consequence
relations in terms of A-pre-ents may be thought of as the analogue of the one
given for rational consequence relations in terms of A-probability functions just
after Proposition 5.2. But what of the other representation theorems in the
rational case?” Might not a consideration of them yield a characterisation of
natural consequence relations? For example, we know (from [7], see also Section
1 of [2]) that for every finite sequence U=U,... U C A", if we define the
relation ~; on SL by, for 0, ¢ € SL,

0y ¢ iff eitherinSy=0foralll <i<k
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or there exists an ¢ such that U; N Sy # () and for the least

such ¢ we have U; N Sy C S,

then pv; forms a rational consequence relation on L and, conversely for every
rational consequence relation |~ on L there corresponds a U such that =
Can a representation analogous to this one exist for natural consequence rela-

tions? The next section makes a start on finding an answer to this question.

5.4 Permatoms and 7y

We begin this section with some new notation. Recall the definition of the set

AtL of atoms over L:
At = {pP ApE AL NPT |6 €40,1} fori=1,2,...,n}.

Given that, so far, our examples of natural consequence relations have given the
impression of natural consequence relations as being “like rational consequence

relations for which the order matters”, we shall make the following definition.

Definition 5.13 We define the set of permatoms, AtZ, of L as follows

* 7

Ath = {pzl(l) A AN DG | 0 is a permutation on {1,...,n} and

e €{0,1} fori=1,...,n}.

Clearly we have At* C AtL and so permatoms are a generalisation of atoms.

Recall the definition of Sy for 0 € SL:
Sy ={a € At" | a - 60}.

By analogy, we define the set Ty C At as follows:
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Definition 5.14 for each 0 € SL we define the set Ty C AtE by
(
Atk if -0
0 if =6
{6 € AtL| 6 has an initial segment which

is an element of rT(0)"} if 0 is contingent

\

Thus, according to the above definition, if € is contingent then Ty contains all
those permatoms which have an initial segment which is a positive clause, minus
the last repeat, of rT'(6). In particular, for 7 a conjunction of literals from distinct
propositional variables in L, T’ consists of all those permatoms of L which contain
T as an initial segment. Note that, for § € AtZ, the only element in rT(§)" is §

itself and so, in light of Proposition 3.23, for contingent § € SL we may write
Ty = {6 € Atk | § Ko}

In fact we may also do this even if 6 is not contingent, since if - 6 then for all
§ € Atl we have § |<0, giving the required Ty = AtL, while if - = then, given
§ € AtE| we have that ¢ |20 iff Bel®(5) < Bel®(0) = 0 for all G iff Bel®(5) = 0
for all G iff =0 which is false. Hence in this case we also get the required
answer, i.e., Ty = ().

The above Definition 5.14 states that if 6 is not a contingent sentence then
T, is one of the two “extreme” subsets of AtZ. The following proposition says

that only if € is a non-contingent sentence can Ty be one of the extreme subsets

of AtE.

Proposition 5.15 Let 6,¢ € SL. Then
(i). Ty = AtE iff - 0.

(ii). Ty = 0 iff = 0.

Proof. (i). If - 6 then Ty = AtL by definition of Ty. Suppose t/ 6. Then if - -6
we have Ty = () # AtL while if 6 is contingent then r7T'() is well-defined and, by
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Proposition 3.17, there exists at least one negative clause 71, say, in rT(f). Choose
any 6 € AtL such that § has 7, (minus its last repeated propositional variable) as
an initial segment. By property (4) of Lemma 3.12, no initial segment of ¢ can
be an element of rT'(6)". Hence § & Ty so Ty # AtL as required.

(i1). If = =6 then Ty = () by definition of Ty. Suppose t/ =6. Then if F 6 we have
Ty = AtL # () while if 6 is contingent then r7'(6) is well defined and, again by
Lemma 3.17, must have at least one positive clause 7, say. Choose any & € At
such that § has 75 (minus its last repeat) as an initial segment. Then clearly

0 € Ty so Ty # () as required. O

We also have the following:
Proposition 5.16 Let § € SL. Then, for any 6 € AtE, § € Ty implies § - 0.

Proof. We have 6 € Ty iff 0 6. Hence the result follows since - extends [&. O

The following lemma and proposition will help to characterise the binary
relation R defined on SL by, for 0,¢ € SL, 0R¢ iff Ty = T and will, in fact show

that this relation coincides with the relation ~ on SL.

Lemma 5.17 Let 6 € SL be contingent and let 7 be a conjunction of literals
from distinct propositional variables in L. Then T Nv € Ty for all conjunctions
v of literals from the remaining propositional variables in L iff T has an initial

segment which is an element rT(0)*.

Proof. The “if” direction is obvious. For the “only if” direction suppose that,
for all v we have 7T Av € Ty. Let ¢, ...,q be all the propositional variables not
appearing in 7 (we may assume [ > 0 since otherwise the result holds trivially).
Then T Aqgu N ... Nq € Ty. We will show that if no initial segment of 7 is an
element of 7T'(6)" then there must exist some conjunction v such that 7 Av & Tj.

But 7 Agi A...Aq € Ty implies that if no initial segment of 7 is an element of
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rT(6)" then 7 itself must be a proper initial segment of an element of r7°(6)*. So,
by Proposition 3.17, 7 must be an initial segment of a negative clause of r7'(6).
Let this negative clause, minus its last repeated propositional variable, be 7 A p;
where p; is a, possibly empty, conjunction of literals. Let ps be a conjunction of
all the propositional variables not appearing in 7 A p;. Then, using property (4)
of Lemma 3.12, no initial segment of 7 A p; A p2 can be an element of rT'()" and

so T A p1 A\ pa & Ty as required. |

Proposition 5.18 Let 6,¢ € SL be contingent sentences. Then the following
are equivalent.
(1). Ty C Ty.

(i1). Every T € rT(0)" has an initial segment which is an element of rT(p)™.

Proof. To show that (i) implies (ii), let 7 be an element of rT'(0)* for which no
initial segment is an element of T (¢)*. Then, for all conjunctions v of literals
from all the propositional variables not appearing in 7, 7 Av € Ty, but by Lemma
5.17, there exists v such that 7 A v & T,,. Hence Ty € Tj.

To show that (ii) implies (i), suppose every element of r7(f)* has an initial
segment which is an element of 77(¢)". Let 6 € Typ. Then § = 7 A ... for some 7
an element of »T'(0)*. Hence § must have an initial segment which is an element

of rT'(¢)™ (since 7 does), so 0 € Ty as required. O

Corollary 5.19 Let 8, ¢ € SL. Then Ty C T iff 0 |~¢ (and so Ty = T, iff

Proof. The case where # and ¢ are both contingent sentences is handled by
Propositions 3.23 and 5.18.

Let us suppose, then, that it is not the case that both ¢ and ¢ are contingent.
First let us assume that 6 is non-contingent. If = =6 then Ty = () while Bel(f) =0

for all pre-ents over L. Hence, for any ¢, we automatically have both Ty C T}
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and 0 ¢ which suffices. If - 6 then Ty = Atl while Bel(f) = 1 for all pre-ents
over L. Hence Ty C T, iff Ty = Atl iff (Proposition 5.15) F ¢ while 6 |<¢ iff
Bel(¢) = 1 for all pre-ents iff (Theorem 2.7) - ¢. Hence Ty C Ty, iff F ¢ iff 6 Lo
as required.

Let us suppose now that 6 is contingent and that it is ¢ which is non-contingent.
Suppose Ty C Ty. Then we cannot have = —¢ since if we did we would have
T, = 0 and so Tp = 0 which implies, by Proposition 5.15, F =6, contradicting 6
being contingent. Hence we must have - ¢ which gives 6 |<¢ as required since
Bel(¢) = 1 for all pre-ents over L. Conversely suppose 6 |~¢. Then again we
cannot have - —¢ since if so then Bel(¢) = 0 for all pre-ents over L which gives
Bel(f) = 0 for all pre-ents over L and so, by Theorem 2.7, - =6, contradicting
6 being contingent. Hence again we must have F ¢ and so Ty C T} as required

since in this case Ty = AtL. 0

With our new notation in place, we now provide a first opportunity to see it

in action by using it to prove a characterisation of rational consequence relations.

5.5 Characterising Rational Consequence

In this section we shall provide a representation result for rational consequence
relations. This characterisation is essentially the same as the one mentioned at
the end of Section 5.3 in terms of atoms which was given originally (for arbitrary,
possibly infinite propositional languages) by Lehmann and Magidor in [7]. Our
proof, however, uses slightly alternative methods. We set it in the framework
of the previous section to allow it to fit more easily with the results obtained
for natural consequence later in this thesis. The techniques used in proving this
result will, to an extent, be transferable to our proof of those results.

We begin by defining the binary relation |~;C SL x SL for U a completely
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general finite sequence of subsets of permatoms.

Definition 5.20 LetU = U,, ... .U, C AtL (k> 0) be a finite sequence of sets of
permatoms over L. We define the consequence relation f~;C SL x SL as follows,

for 0,0 € SL:

0y o iff either UiNTy=0 for alli
or  UiNThr-p = () for the least i such that U; N\'Ty # .

We shall characterise rational consequence by concentrating on those sequences

U which are admissible according to the following definition.

Definition 5.21 LetU,,...,U, C AtE be a finite sequence of sets of permatoms.

Then this sequence is admissible iff it satisfies the following condition:

(AD) Foralli=1,...,k and all § € AtL, if § € U; then &' € U; for all &' € Atk

* 7

such that &' = 4.

Hence, if a sequence U= U, ..., Uy is admissible, the position of any permatom
d in that sequence (i.e., the set of ¢ such that § € Uf;) is independent of the order
we take the literals in ¢ to be in. Thus we really only need to look at the position
of each atom. In the next chapter we shall weaken this condition for our attempts
to characterise natural consequence. Note that if ¢; = () for all i = 1,...,k then
the sequence Uy, . .., Uy is vacuously admissible.

The condition (AD) was given in that form to make it easy to check. However
it has an equivalent formulation which we will find useful. To show it we need

the following lemma, which should be obvious.

Lemma 5.22 For all § € AtE and all 0 € SL, if § = 0 then there exists some

8 € At such that ' =5 and &' € Ty. O

Lemma 5.23 Let U, ..., U, C AtL be a finite sequence of sets of permatoms.

Then the following are equivalent:
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(i). U, ... Uy is admissible.
(i1). Foralli=1,...,k and all 8 € SL we have U; N Ty # O iff U; N Sy # 0.

Proof. To show that (i) implies (ii), let i € {1,...,k} and let § € SL. Suppose
U;NTy # (0 and 6 € U; NTy. Then, by Proposition 5.16, 6 F 6 and so there exists
a € Sy such that a = ¢ (take a to be such that {a} = S;5). By admissibility we
have o € U; which gives U; NSy # ) as required. Conversely let @ € U; N Sy. Then
a k60 so, by Lemma 5.22, there exists 6 € Ty such that 6 = a. By admissibility
we get 6 € U; and so U; N'Ty # ) as required.

To show that (ii) implies (i) suppose that Uy, ..., Uy is not admissible. Then there
exists i € {1,...,k} and §,0 € AtL such that § € U;, & ¢ U; and § = §’. Suppose
Ss = {a}. Then if @ € U; we have U;NSs: = U;NSs # D and U;NTy = UN{'} =0
as required. If a € U; then U; NTs = U; N {6} # 0 and U; N S5 = ) as required. O

This reformulation of (AD) makes the following easier to show.

Theorem 5.24 For U = Uy, ..., U, C AtL an admissible sequence of sets of

permatoms, the consequence relation |~ is a rational consequence relation on L.

Proof. By Lemma 5.23 we have

0 ¢ iff either U;N Sy =0 forall i

or  U; N Spa-y = 0 for the least ¢ such that U; N Sy # 0

From here it is straightforward to check that |~; given in this way satisfies the
properties given in Definition 5.1 and so |v; is a rational consequence relation as

required. O

Thus we have that, for an admissible sequence U , the relation p~; forms a
rational consequence relation. We now show that every rational consequence
relation on L is given by an admissible sequence of sets of permatoms, i.e.; that

for every rational consequence relation |~ on L there exists an admissible sequence
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U such that r~=I~;. Before we describe how to construct U from p we give some
derived rules for rational consequence which we shall find useful. Properties (1)
(without proof) and (4) below were given in [7] (in Lemmas 3.10 and 3.11 there).

We include both their proofs below for completeness.

Lemma 5.25 The following are derived rules for rational consequence relations:
. OVl
OV oV~ =
0o, OV~
OV o
OV o L
0 L
OV ¢ —=g, OV YR )
YV Qg
5 OV .. NOp o, VU~ for somei=1,....,m
' OLV... VO,V o

2.

3.

/.

0 L
o0

Proof. (1). From 6V ¢ |~ =¢ and 6V ¢ |~ 0V ¢ vV ¢ (SCL) using CMO

we get (0V @) A (6V ¢ V) v =¢ which, in turn, gives (0 V ¢) V (¥ A ¢) |~
—¢ by LLE. Combining this with ¥ A =¢ |~ —¢ (SCL again) using OR yields

6.

OV )V (WANP)V (Y A—¢p) I~ —¢ and we conclude by LLE.

(2). From 6V |~ =) together with 8V ¢ |~ 0V ¢ (REF) we obtain, using AND
and RWE, 0 V1 |~ 6. We also have, by SCL, 6 |~ 6V 1) and so we may conclude
using Equivalence (see Proposition 5.2) with 6 |~ ¢.

(3). From 0V ¢ |~ L we get 0V ¢ |~ 6 by RWE. We also have 6 |~ 0V ¢ by
SCL. Hence, from these two, we may apply Equivalence with 8V ¢ |~ L to obtain
0 |~ L as required.

(4). From 0V ¢ |~ —¢ we obtain 0V ¢ V ¢ |~ —¢ from (1) proved above. If it

were the case that 6 V ¢ )¢ =) implies 0 V ¢ V b ¢ =(¢ V 1) then we could use
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this with 6 V ¢ V ¢ |~ —¢ and RMO to obtain (0 V ¢V ¥) A (¢ V ) |~ —¢ and
then conclude by LLE. Hence our result will be proved if we can show 0V ¢ | —)
implies OV oVt = (o V1)), equivalently OV oV |~ =(p V) implies OV~ —ab.
But from 0V ¢V |~ —(p V1)) we get both 0V ¢V |~ V1) (using REF, AND,
RWE) and 6V ¢ V¢ |~ =1 (using RWE). Hence, applying CMO to these two, we
obtain (0 V ¢ V) A (0V ) |~ = and so 0 V ¢ |~ =, from LLE, as required.
(5). From 6, V¢ |~ =) and property (1) of this lemma we obtain 6; V...V 6,V
 —). Using this together with 6; V...V 6,, |~ ¢ and property (2) of this lemma
gives the required conclusion.

(6). From 6 |~ L we get 6 ~ ¢ from RWE. Hence using these two with CMO gives
ON¢ |~ L and so, by RWE, A ¢ |~ —0. Meanwhile, by SCL, we have =0 A ¢ |~ —0
and so applying OR to this and 6 A ¢ |~ =6 yields (=0 A ¢) V (0 A ¢) ~ =0 and

so the conclusion follows from LLE. O

We will now show how to construct, from a given rational consequence relation
I~, an admissible sequence 2/ such that r=pv;;. So let |~ be our given rational

consequence relation on L. We begin our construction process by setting
U=U(R)={6€ At | 5 L}.

For a permatom § € AtL) § |~ L has the intuitive meaning: “if § is true then,
typically, L is also true”. In effect what this is saying is that, according to |~, the
possibility that ¢ is true should not be entertained at all. In this sense, then, we
may think of U as the set consisting of those permatoms which are “consistent”
for fv. As a next step we define, from |, a binary relation <.. on AtZ by setting,
for 61,0, € AtL,

01 <~ 0o iff 07 V 09 v 0.

(Note that we could define <. in this way from any consequence relation on SL.)

For 81,0, € AtE, the intuitive meaning behind 6; V &y |~ =4, is: “if either §; or &,
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is true then, typically, d, will be false”. According to |~ then, d; <. d5 says that
01 is more natural than, or “preferred” to, ;. We need the following properties

of <.

Lemma 5.26 The relation <. defined from |~ above is irreflexive on U and

transitive on AtE.

Proof. Let §; € U for i = 1,2,3. To show that <. is irreflexive on U suppose for
contradiction that we had d; <. 91, equivalently §; V é; |~ —d;. Then, by LLE,
we would get d§; |~ —d;. We also have §; |~ §; from REF and so using these two
with AND gives us d; p~ d; A =d; which gives é; |~ L by RWE. Hence §; ¢ U
giving the required contradiction. Note that the restriction to ¢ is necessary here
— <. is not irreflexive on the whole set At~.

To show transitivity suppose d; <. d and dy <. d3, i.e., 07 V dy v =y and
dy V 93 |~ —d3. We must show d; V 3 |~ —d3. But from 61 V ds |~ —ds we
get 91 V dg V 03 |~ =y from Lemma 5.25(1) (and LLE). Using this together
with 07 V 02 V 93 |~ 01 V &2 V d3 (an instance of REF), AND and RWE yields
01 Vo2V I3 p~ 01 V 63. Meanwhile we can also apply Lemma 5.25(1) (and LLE) to
do V I3 |~ —d3 to obtain 01 V dy V 3 |~ —d3 which, when combined with the just
obtained 0 V 02 V 03 |~ 91 V 93 and CMO, gives us (61 V d2 V d3) A (61 V d3) |~ —ds.
Hence §; V 3 |~ =03 by LLE as required. O

By Lemma 5.26 the relation <. forms a strict partial order on the set U.
Hence it makes sense to talk about the minimal elements in subsets of &/ under
<~. Let us inductively define a sequence of sets of permatoms Uy, Us, ... by, for

each 1 =1,2,..., setting

U, = {6 € AtE | 6 € U and 6 is minimal in U — | J,_, U; under <. }.

1<t
So U, contains all the most natural (according to <.) permatoms in U, Us con-

tains all the most natural permatoms in U —U; etc. Clearly the U4;’s so constructed



CHAPTER 5. PRE-ENTS AND CONSEQUENCE RELATIONS 192

are pairwise disjoint so, by the finiteness of AtZ, there exists k such that ; = ()
for all i > k. Hence we arrive, from our given rational consequence relation v, at
a finite sequence U = U () = U, ..., Uy of pairwise disjoint sets of permatoms

with U = Ule U;. We next show that this sequence is admissible.
Lemma 5.27 The sequence U defined above is admissible.

Proof. We will show by induction on ¢ that, for each ¢ = 1,... &, for each

5 e Atk

* )

if § € U; then & € U; for all &' € AtE such that &’ = J. To begin with,
fori =1,let § € U;. Then § € U and 6 is minimal in &/ under <. Let &' € AtE be
such that ¢’ = 0. We must firstly make sure that ¢’ € Y. But 6 € U implies ¢ L
which, in turn, implies §' ¢ L by LLE, and so §' € U as required. It remains to
show that ¢’ is minimal in ¢/ under <.. But suppose for contradiction that ¢’
was not minimal in &/ under <. Then there must exist v € U such that v <. ¢,
ie., vV |~ —d which gives vV |~ = by LLE and RWE. Hence also v <. ¢
and so 0 is not minimal in & under <., giving the required contradiction. This
completes the base stage of the induction. Now suppose, for inductive hypothesis,
that 1 < i < k and that for all j < i we have that, for all § € AtL, if § € U; then
&' € U; for all §" € At} such that &' = 4. Fix §d € Us. Sod €U —J;_;U; and ¢
is minimal in this set under <.. Fix &' € Atl such that & = 6. We must show
that 0’ € U;. As was proved above, we know that, since € U, we have §' € U.
Also if it were the case that ¢’ € |J,_,U; then, by our inductive hypothesis, we

U It

J<i

would also have 0 € |J,_, U, giving a contradiction. Hence ¢’ € U —

j<i j<i
were not minimal in this set under <. then, similarly to the case proved above,

neither would § be — contradiction. Hence ¢’ € U; as required. O

We are now in a position to prove our required characterisation.

Theorem 5.28 Let |~ be a rational consequence relation on L. Then there exists

an admissible sequence U = Uy,..., U, C AtL of sets of permatoms such that
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=g

Proof. From our given |~ we define the sequence U = U([~) = Uy, ..., U, C AtE
via the preference relation <. as in the construction process outlined above. This

sequence is admissible by Lemma 5.27. We will now show that

0~ ¢ iff either U;N Sy =0 for all i

or Ui N Spa-g = 0 for the least i such that U; NSy # 0

which suffices by Lemma 5.23. To show the “only if” direction here suppose that
0 |~ ¢. IfU;NSy = () for all i then we are done so suppose i is such that U4;N.Sy # 0
and furthermore that ¢ is minimal such that this is true. Let oo € Spp-y. We will
show that a € U; which will prove U; N Sya—y = 0 as required. Firstly if o & U
then o € U, as required so let us assume o € U. If o € U; for some j < ¢ then
we would have U; N Sy # 0 (since o € Sya—p C Sp) which would contradict the
minimality of i. Hence a & |J
inU -
implies \/ Sy |~ —a by RWE since a € S_4. If Sy = {a} then we have a |~ —a

;<;Uj so it remains to show that « is not minimal

;Ui under <. But ¢ ~ ¢ implies, by LLE, \/ Sy I~ ¢ which, in turn,
and so a |~ L (using REF, AND, RWE) which contradicts a € Y. Hence we
must have Sy = {a,71,...,%} where [ > 0, and so a Vv V...V~ p —a. By
LLE this gives (11 V@)V (2 Va) V...V (7 Va) p —a and so, from the derived
rule DR (see Proposition 5.2), we have ~, V a |~ —a for some r € {1,...,1}, i.e.,

Y =<~ a. Now by the minimality of i we know v, ¢ |J._,U; and so it remains to

J<i

show =, € Y which will show that a cannot be minimal in & —|J._, U; as required.

j<i
But suppose v, € U, i.e., 7. p~ L. Then, by RWE, we also have ~, |~ —,. Also
a |~ =, by SCL so 7, V a |~ =, by OR. This together with 7, V a |~ —a gives
Y Va b =(y, Va) by AND, RWE which in turn (using REF, AND, RWE) gives
v Va o L, and so « L by property (3) from Lemma 5.25 (and LLE). Hence

a € U — contradiction. Hence we must have v, € U as required.

Let us now turn to the “if” direction. Firstly if ;N Sy =0 for all i = 1,...,k
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then, since U = Ule U;, this is saying that & N Sy = 0. Hence, in this case,
a p~ L for all @ € Sy and so, by OR repeatedly, \/ Sy |~ L which gives 6 |~ L
by LLE. Hence 6 |~ ¢ as required by RWE. Now let us suppose i is such that
U; N Sy # () and furthermore that ¢ is minimal with this property. We will show
that if 0 ¢ then U;NSya—y # 0. We have that 6 ¢ ¢ implies (by LLE) \/ Sy [ ¢,
le, V...V VY V...V b ¢ where Sg = {d1,...,0,71,-..,7%and 1, ...,
(I > 0) are those elements of Sy which are minimal in & N Sy under <. For each
j=1,...,7 we have §; V; |~ —y; for some s € {1,...,l}. This is clear if v; € U
(since otherwise v; would be one of the minimal elements) while if v; € U, i.e.,
v; b~ L, then 6; V 7; |~ —y; by Lemma 5.25(6). Hence we may repeatedly apply
property (5) from Lemma 5.25 to obtain d; V...V §; ¢ ¢ and so 0, ¢ ¢ for some
y € {1,...,l} (otherwise we would have 6, V...V d; v ¢ by OR repeatedly). Now
if 9, = ¢ then d, |~ ¢ by SCL giving a contradiction. Hence 0, I/ ¢, equivalently
0y = =, so 6, € Spr-g. Our result will then be proved if we can show d, € U;.
We know U; NSy # 0 so let 6 € Uy N Sy. If & = ~; for some j € {1,...,r} then §
is not minimal in Sy under <. so, since 7 is minimal such that U; N Sy # 0, J is

not minimal in U — J._, U; under <. contradicting § € U;. Hence we must have

j<i
0 = 0, for some m € {1,...,1}. If m =y then 6, = 0 € U; as required so suppose

y # m. Then if 6, & U; we would have 7V §, 6, for some 7 € U —J,_,U;. By

j<i
the minimality of d, in Sp we also have 6 Vo, ¢ =d, and therefore (using property
(4) from Lemma 5.25) 7V § |~ =0 which contradicts 0 € ;. Hence 9, € U; and

50 U; N Sppr-e # 0 as required. O

Thus we have proved a representation theorem for rational consequence rela-
tions. We have shown that such relations correspond to admissible sequences of

sets of permatoms.
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5.6 Weakly Admissible Sequences

Our aim now is to find a characterisation of natural consequence relations anal-
ogous to that given in the previous section for rational consequence relations.
Since natural consequence relations are more general than rational consequence
relations, we need first of all to weaken the condition (AD). We do this in the

following way.

Definition 5.29 Let U = U, ..., U, C AtE (k > 0) be a finite sequence of sets
of permatoms. We shall say U is weakly admissible (over L) iff it satisfies the

following condition:

(WA) For each T a (possibly empty) conjunction of literals from distinct proposi-
tional variables from L, and for each p € L such that £p does not appear
in T, either Uy N T, =0 for alli =1,....k, or Uy N (Trpp U Trp—p) # 0 for

the minimal i such that U; N'T, # (.

Note we are adopting the convention that = A @) so if 7 = () then T, = AtL. In this
case the condition (WA) reduces to: For each p € L if ¢ is minimal such that U; #
0 then U4;N(T,UT.,) # 0. Note that if a sequence I/ is admissible then it is indeed
weakly admissible. Our objective now is to characterise natural consequence
relations in terms of weakly admissible sequences U. The results of this section
will show that, for such a sequence U , b~ forms a natural consequence relation.
However rather than show this directly by proving |~,; satisfies all the rules for
natural consequence we will instead tie together weakly admissible sequences with
pre-ents and show how each weakly admissible sequence U= Uy, ..., U such that
U; # () for some i = 1,. .., k gives rise to a (A-)pre-ent G (over a larger language L’
than L) such that, for all §,¢ € SL, 0 g ¢ iff § ~; ¢. This will suffice to show
that |~; is a natural consequence relation since, by results in Section 5.3, ¢

forms a natural consequence relation on the language L’ and hence clearly also
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on L. By proceeding in this way we ensure that any characterisation of natural
consequence in terms of weakly admissible sequences will automatically give us
a kind of characterisation of natural consequence in terms of pre-ents. Note that
we do need the assumption here on U that U; # () for some 7 since if U; = () for
all 7 then we have 6 |~; ¢ for all 0,¢ € SL. In particular we have 7 |~; —n for
any 7 € SL such that F 7. However for G a pre-ent we can never have n g —n

since we always have Bel%(n) = 1 # 0 and

Bel%(nA-—m)  Bel®(n)

Bel6(y)  Bel®(n) L7 00

Hence if U = U, ..., U, is such that U; = () for all 7 then there can be no pre-ent

G such that vg=}v,;. However, for such a U, the relation vy trivially satisfies
all the rules from Definition 5.9 and so still forms a natural consequence relation.

So let U = Uy, ..., U, be a weakly admissible sequence of subsets of AtL such
that U; # 0 for some i = 1,..., k. It should be clear that, for each permatom 0,
only the least i such that 0 € U; is relevant to the relation |~;; — any appearances
of 0 in any later U4; have no effect on ;. Also, since it is only the overall ordering
of these least ¢’s which is important, we may insert or delete appearances of the
empty set () in the sequence Uy, ... U, without changing |~;;. Hence we may as
well make the assumption that it is ¢4; which is non-empty and that U; C U;,, for
t=1,...,k—1. The pre-ent we define from U will be defined over the language

L’ O L which we define as follows:
L'=LuU{z 517>0, ix#ifork#1, e €{0,1} for 1 <k < j}.
21 lj

So L' consists of the propositional variables in L together with a new set of
variables consisting of one for each non-empty sequence of literals taken from
distinct propositional variables in L. For each 7 a (possibly empty) sequence of
literals from distinct propositional variables in L, we define the scenario s™ € WL/
by

sT=A{p | p/" appears in T} U{z, | p C 7, u#0}.



CHAPTER 5. PRE-ENTS AND CONSEQUENCE RELATIONS 197

So s™ contains all the literals which appear in 7 together with those variables
x, € L' — L for which p is a non-empty initial segment of 7. We remark that the
reason for the x,’s is to ensure 71 # 7 implies s™ # s™. Note that s? = 0.
We use U to define a pre-ent G = G(U) over L as follows:

Let p € L', s,t € WL'. Firstly, if p € L' — L then just define G,(s,t) in any
correct way (since this case will not be needed in the proof). So suppose p € L.
Of course if s Z t then we set Gp(s,t) = 0 while if p € s (—p € s) then we set
Gp(s,t) =1 (G,(s,t) = —1), so suppose also that s C ¢t and £p ¢ s. The only
case here we are interested in is if s = s for some sequence of literals 7 from
L. (If it is not the case that s = s7 for any such sequence 7 then again we just
define G, (s, ) in any correct way.) Note that (for p € L) £p ¢ s™ iff £p does not
appear anywhere in the sequence 7. So let s be of this form. First of all let us
suppose that 7 is such that U;NT, # () for some i € {1,...,k}, equivalently (since
we assume the U;’s are increasing) Uy, N T, # () (note that whenever a sequence
of literals 7 appears as a subscript as in T, we are using it as shorthand for the

conjunction, in sequence order, of those literals). In this case we define

_ Gy(s7, 577) if t = 5P
Gp(s7,5™P) + G, (s7,877P)
—G_ (sT.57P

Gp(s,t) =4 _ Gﬁp(s_,s ) ift =s""
Gy(57,57) + Gopls7,577)
0 otherwise

where, for v € {0,1},
— v 0 lf Z/[k ﬁ TT/\pV - @

Mt otherwise

where ¢ is minimal such that N7} # 0 and j > ¢ is minimal such that U;NT; v #
(. (Note that, since U is weakly admissible we know that if ;N7 # () then either
UNT,py # D or UsNTyp-y # 0. Hence G (s7, s™") = 1 for some v € {0, 1} which
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ensures that the denominator in the above definition of G,(s,t) is non-zero.) If

s = s for some 7 but U, N T, = () then we define

ift =g

N[ =

ift=s"""

0 otherwise.

We will now show that, for all 6,¢ € SL, 0 ~; ¢ iff 0 ~¢ ¢. The main work
required to prove this lies in showing that, for all § € SL and each i =1,... k,
Bel®(0) = O(\Y) iff U; N Ty = (). Our next couple of results help us work towards

that aim.

Lemma 5.30 Let U = Uy, ..., U, C AtL be a weakly admissible sequence of sets
of permatoms such that Uy # O and U; C U;y fori=1,... k and let G = G(Zj)
be the pre-ent over L' defined from U as above. Then, for all 6 € AtL, if § & U,
then Bel®(8) = 0, otherwise

/\ifl

a

Bel®(8) =

where i € {1,...,k} is minimal such that 6 € U; and a € IR((N\)) is such that
a=0(1) and a # O()\).

Proof. Let § € At and suppose that § = ¢; A ... A ¢,. Then we have, from the
definitions of Section 2.2,
Bel®(0) = > G (D,51) - Goy(51,52) - - - G (Sn1, Sn).
w8 Tor it

We now claim that G, (0, s1) - Gy, (51, $2) - - - G, (Sn—1, $n) # 0 only if s; = 1192"%
fori =1,...,n. We show this using induction on i. For i = 1 we have Gy, (0, s;) -
Gy (51,82) - Gy (8n_1,5,) # 0 implies G, (0, 51) # 0. Now, since § = s, our
definition of G in this case gives us that G, (0, s1) # 0 only if either s; = s%

or s; = s (where, recall, given a literal ¢ = p¢, we define § = p'~¢). Hence,
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since we must have ¢; € s;, we conclude that s; = s? as required. Now suppose
1 < 7 < n and that, for induction hypothesis, s;_; = s9%-1. We must show
s; = s17% But Gy, (0, 81) Gy (81, 82) -+ Gy, (Sn—1, $n) # 0 implies G, (s;-1, 8;) =
Gy (s0%1 ;) # 0. Again, our definition of G' now forces either s; = s7"%-1%
or s; = s1%-1% and again the requirement that ¢; € s; forces us to conclude

5; = @919 a5 required. Thus our claim is proved and we have

Bel®(8) = [ ] Gy (s2 072 sv-vima),

j=1
Let us now suppose d € U,. We must show that, in this case, Bel%(d) = 0. But
d & Uy, is equivalent to saying Ux N Ty n. ag, = 0 (since {0} = Ty a..nq,) and so we
may talk of the least [ € {0,1,...,n} such that Uy NT . A = 0. Note that [ > 0
since Uy N Tpp = U 2 Uy # 0. For this choice of | we have U, N Ty n.ng , # 0
and so, by definition of G,

q1-+qi—1 ¢q91°°q91—191
Gq (Sm"'qz& S(II"'(]lflf]l) — GQZ(S ) S )
I ) ral ral g\
qu(sfh Q-1 gN fn-wz) + qu(slh Q-1 g0 qz—uh)

But Uy, N Ty a..nq = O implies, from the definition of the function G, that
aql(sqlmfnq’ Sqr“llzfltu) =0.

Hence

qu(sfh'“‘ﬂfl’ S‘Il""]lflf]l) =0

and so
n

Bet®(8) = [T Gy 52, 5050 =

J=1

as required.
Now suppose that we do have § € U. Then let i be minimal such that § € U;.
We must show that, in this case, we have

)\ifl

a

Bel®(8) =
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for some a € IR(())) such that @ = O(1) and a # O(\). Since 0 € U, we have
that Uy, N Ty n..ng, # O and so, since Ty n.ng, € Tyin..ng, (by Corollary 5.19),
Ur N Ty nng; F () for all j =1,...,n. For each j = 0,1,...,n let i; be minimal
such that U, N Ty a. .ng # ) (so ip = 1 by assumption and i, = 7). For each

j=1,...,n our definition of G gives us
qu (8111~~'f1j717 Sq1“'Qj71Qj)
qu (SQI"'ijl’ Sq1"'Qj71qj) + qu (Sql---qjﬂ’ SQl"'Qj—lqj)

)\ij —ij,1

qu (5(11-"!1]'71’ 5Q1"-ij1qg‘) —

a;
where

a; = qu (SQT“QJFI, SQI“'ijl‘Zj) + Gaj(sfh"ﬂjfl’ Sq1"'ijlqj)‘

By the weak admissibility of U we know that at least one of the two terms in a;
is equal to 1, and the other is of order O(\Y) for some y > 0. Hence we know

that a; = O(1) and a; # O(X). Hence
BGZG(5) _ Hqu (SCII"'Q]'—17 Sq1-"q]'—1qg‘)
j=1

N\

Il
—

a/.
=1

Ain*io

a

where a = [[a;. Now clearly a = O(1) while if it were the case that a = O(\)
then (see Proposition 4.7(ii)) we would have to have a; = O(\) for some j —

contradiction. Hence our result is proved since i,, = ¢ and i = 1. O

Corollary 5.31 Let U and G = G(U) be as in Lemma 5.30 and let § € Atk
Then, for allt=1,... k,

6 € U; iff Bel®(8) # O(\Y).

Proof. For the “only if” direction suppose d € ;. By Lemma 5.30,
N

a

Bel€(0) =
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where j is minimal such that ¢ € U; and a € IR((\)) is such that a = O(1) and
a # O()). Now if it were the case that Bel®(d) = O(M) then we would have

pYan
a

=b

where b = O()\), and so
N t=a-b=0(1) x ON)=0(N)

which is a contradiction. Hence Bel®(5) # O(MN) which means, since j < i,
Bel®(8) # O(\!) as required.

Conversely suppose d & U;. If in fact § € U, then Lemma 5.30 gives us Bel(§) =
0 and so certainly Bel“(§) = O()\¥) as required. So suppose § € U, and again
suppose j is minimal such that 6 € U; (so, since the U are increasing, i < j —1).

Then, by Lemma 5.30,

&F@ZAZ:f¥g>:mxﬂ

using Proposition 4.7(iii), since a # O(A). Hence, since ¢ < j — 1, we also have

Bel®(8§) = O()\!) as required. 0

We now give the key result which allows us to prove the equivalence (on L)

of vz and gz

Lemma 5.32 Let U and G = G(U) be as in Lemma 5.30. Then, for all § € SL
andi € {1,...,k},
Bel®(0) = OO\ iff U N Ty = 0.

Proof. We firstly consider the case when 6 is non-contingent.

If - =0 then Bel®(f) = 0 and so Bel®(0) = O()\!) for all i. Hence we must show
that U; N Ty = ) for all i. But this is true since = =6 implies Ty = () by definition
of Tp.
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If, on the other hand, @ then Bel®(f) = 1 and so Bel®(0) # O()\!) for all
i €{1,...,k}. Hence in this case we must show U; NTy # ) for all i, equivalently
(since the U; are increasing) U; N Ty # (. But + 6 implies Ty = AtL by definition
of Ty and so Uy N Ty # O iff U; # (), which we have by assumption as required.
Now suppose that 8 is contingent. Then, from Corollary 3.16, we have

Bel(0) = ) Bel(r).

rerT(0)+
Suppose that Bel®(6) # O(\?). Then Bel®(1) # O(X\?) for some 7 € rT(0)*. Let
G,---,q € L (I >0) be all those propositional variables which do not appear in
7. Then we have
Bel(r)= Y Bel°(rAg AL Ag").
(V1. E{0, 1}

Hence there exists vy, ..., € {0,1} such that
Bel(TAq" A . Agt) # O(N).

Hence, putting 6 = 7 A gi* A ... A g" gives us 6 € U; by Corollary 5.31 while
obviously 0 € Ty so U; N Ty # (. Conversely suppose U; NTy # O and let

d € U;NTy. Then ¢ is of the form 7/ A p for some 7" € rT'(6)" and we have

Bel(0) = Z Bel®(7)
)

TerT(9)+
> Bel®(1)
> Bel®(7' Ap)
£ O\ form Corollary 5.31.

Hence if Bel®(0) = O(\) then, since Bel®(0) > Bel®(t' A p) > 0, we must also
have Bel%(7' A p) = O(\) — contradiction. Hence we get Bel®() # O(\!) as

required. O

We are now in a position to prove the main result of this section.
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Theorem 5.33 For each weakly admissible sequence U= Uy,...,.U, C AtL of
sets of permatoms of L such that U; # O for some i = 1,...,k there exists a

pre-ent G (possibly over a larger language than L) such that, for all 0,¢ € SL,
0 ra ¢ iff 0 by .

Proof. Given U satisfying the conditions of the theorem and given that, as we
have already said, we may assume the U; are increasing and U; # 0, let G = G (Zj )
be the pre-ent over the language L’ defined as in the above construction process.
By Lemma 5.32 we have, for all § € SL and i € {1,...,k}, Bel®() = O(X\}) iff
U; NTy = 0. We claim that this G fulfills the requirements of the theorem, i.e.,
that, for all 0,¢ € SL, 0 ~g ¢ iff 0 |~ ¢.

To show the “if” direction suppose 6 |~y ¢. If Uy NTy = O for all i then we
must have Bel®(0) = O()\) for all i and so, by Proposition 4.4, we must have
Bel%(#) = 0 and so 6 g ¢ as required. So suppose i is minimal such that
U; N Ty # 0. Then i is minimal such that Bel% () # O(X¥) (and so Bel®(0) # 0
and Bel%(0) = O(N\'™!)) while 0 |~ ¢ gives usU;NTyr—g = 0, i.e., Bel(OA—¢) =
O(X\"). Hence, using Proposition 4.7 (iii),

Bel€(0 A —¢)

Bel€(6) = O()‘i_(i_l)) =O0(})

which gives 6 ¢ ¢ as required.

To show the “only if” direction suppose 0 g ¢. If Bel®(§) = 0 then clearly
Bel%(0) = O(XY) for all i and so U; N Ty = ( for all ¢ giving 6 |~ ¢ as required.
So suppose Bel%(f) # 0. Then we must have U; N Ty # @ for some i (since
otherwise Bel®(f) = 0 by Proposition 4.4). Let us assume that 4 is minimal
such that this occurs (so 4 is also minimal such that Bel®(6) # O(\Y)). We
must show that U; N Tyr-s = 0. Let j be minimal such that U; N Tyr—y # 0, so
Bel(0 A =¢) = O(M~1). Then we know i < j since Tyr-g C Ty (using Corollary

5.19), which gives U; N Ty # () and so j < ¢ would contradict the minimality of 1.
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But if 7 = ¢ then, by Proposition 4.7 (iii),

BelG(0 N —|g25) ) )
— 0oO\U-D-6=)y = O(1
Bel®(0) ( )=0(1)
which contradicts 0 ¢ ¢. Hence i < j, i.e., Ui N Tya-, = ( as required. |

With Theorem 5.33 in place it is now easy to show that |~; for U a weakly

admissible sequence forms a natural consequence relation.

Corollary 5.34 Let U = Uy, ..., U, C AtL be a weakly admissible sequence.

Then the relation M—ig SL x SL forms a natural consequence relation on L.

Proof. If ; = () for all i = 1,...,k then we have 6 |~; ¢ for all ,¢ € SL.
Hence, in this case, j;; trivially satisfies all the rules for natural consequence. If
it is not the case that U; = () for all 7 then the result is still true since, by Theorem
5.33, we may now assert the existence of a pre-ent G' such that (on SL) va=py

and we know v forms a natural consequence relation by Theorem 5.10. O

The results of this section have thus provided us with an example, other
than (though closely linked to) f~¢ for G a pre-ent on L, of a family of natural
consequence relations on L, namely the family p; for U a weakly admissible
sequence of sets of permatoms of L. In the next chapter we will attempt to show
that every natural consequence relation on L arises from such a weakly admissible
sequence uU. By Theorem 5.33 any such result would show that every (non-trivial)
natural consequence relation on L is given by the restriction to SL x SL of |~¢ for
a pre-ent over a larger language L’ O L. Thus giving us a kind of characterisation
of natural consequence of the type originally called for in terms of pre-ents. We
end the present section by giving a reformulation of the condition (WA) which

will prove useful in some of the proofs in the next chapter.

Corollary 5.35 Let U = Uy, ..., U, C AtE be a sequence of sets of permatoms
of L. Then U is weakly admissible iff the following holds:
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e Forall 0,¢ € SL, either Uy NTy =0 for all i = 1,....k, or Ui N (Tyag U
Ton-s) # O for i minimal such that U; N Ty # 0.

Proof. We must show that this condition is equivalent to the condition (WA).
That it implies (WA) is clear. To show the converse implication let I be a
weakly admissible (i.e., satisfies (WA)) sequence of sets of permatoms over L.
If U; = 0 for all j then the condition holds trivially, so suppose U; # () for some
j. Then, by Lemma 5.32 there exists a pre-ent G over a language L' O L such
that, for all ¢y € SL and i = 1,....k, U; N Ty = O iff Bel®(v)) = O(\). Let
0,90 € SL. If U; N Ty = O for all j then again the condition is true, so suppose
otherwise and let ¢ be minimal such that U4; N Ty # (. Then 7 is also minimal
such that Bel®(0) # O(X'). If both U; N Tyay = O and U; N Toppy = O then
Bel(0 A ¢) = O(N') = Bel®(0 A —¢) which would give

Bel9(0) = Bel“(0 A ¢) + Bel®(0 A =)
= O(\)+ 0

= o)

which is a contradiction. Hence we have either U; N Tyny # O or U N Topp-p # 0

as required. O



Chapter 6

Characterising F.T. Natural

Consequence

6.1 Introduction

Given a weakly admissible sequence U of sets of permatoms of L, we have seen
(Corollary 5.34) that if we define a consequence relation fv; on SL by setting,
for all ,¢ € SL,

0 o iff either U;NTy = (0 for all 4
or Ui NTpr-y = O for the least i such that U; NTy # 0

then |v,; forms a natural consequence relation on L. The results in this chapter are
motivated by a desire to completely characterise the class of natural consequence
relations on L in terms of weakly admissible sequences of sets of permatoms of
L. In other words, given a natural consequence relation |~ on L, we would like
to show that there exists a weakly admissible sequence U = U( ) =U, ... Uy
such that ~=f~;. We shall show that we almost arrive at such a result. We
begin with the idea that we would like to prove this characterisation analogously

to the way we proved the corresponding result for rational consequence relations

206
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in Section 5.5, where we showed that every rational consequence relation arises
as pv;; for some admissible sequence U. Section 6.2 is devoted to making the
link between our current case and the rational case more transparent by studying
what we call permutation trees, which are subsets of permatoms in which all the
elements are syntactically “comparable” to each other and on which a natural
consequence relation behaves like a rational consequence relation. Any proof of a
characterisation for natural consequence must utilise all the rules of Definition 5.9
and any additional property of |~ that we use must be shown to be derivable from
this our basic set of properties. Unfortunately the proof we shall give employs
a rule which, although sound for |, does not obviously appear to follow from
this set. We shall describe this rule, which we call (FT) (standing for Full
Transitivity) in Section 6.3. Any binary relation on SL which satisfies all the
rules for natural consequence together with (FT) we shall call a fully transitive
(f. t.) natural consequence relation. In Section 6.3 we shall show that the relation
rq for G a pre-ent, and hence (applying Theorem 5.33) the relation f~; for U a
weakly admissible sequence, satisfies the extra rule (FT) and so is a f. t. natural
consequence relation. We shall also show that every rational consequence relation
satisfies (F'T') and so the class of rational consequence relations forms a subclass
of the class of f. t. natural consequence relations. Then in Section 6.4 we give
the main result of this chapter — we show that each f. t. natural consequence
relation is given by a weakly admissible sequence U= Uy, ... ,U. Thus what
we end up with at the end of this chapter is not a characterisation of natural
consequence but a characterisation of f. t. natural consequence. If our given f. t.
natural consequence relation |~ is non-trivial, i.e., it is not the case that 6 |~ ¢
for all #,¢ € SL, then it will be apparent that U; # () for some i. Hence in
that case we may then apply Theorem 5.33 to show that there exists a pre-ent

G (over a language which extends L) such that, on its restriction to SL, frg=|~.
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Thus the results in this chapter will extend to give us a kind of characterisation
of (non-trivial) f. t. natural consequence relations in terms of pre-ents. Finally
in Section 6.5 we use the main result of Chapter 4 (Theorem 4.1) to show how
the family of consequence relations |~, for z an ent may be said to correspond
to those (non-trivial) f. t. natural consequence relations which satisfy a further,
natural, property. We end the thesis with some concluding remarks in Section

6.6.

6.2 Permutation Trees

Recall from Section 5.5 that, given a rational consequence relation |, we defined
the (admissible) sequence of permatoms U such that =Py by, firstly, forming
the set U = U(~) of those permatoms which were consistent for |~ (i.e., those
permatoms § for which we had § ¥ L) then, secondly, defining a preference
order on U that was irreflexive and transitive and then, finally, taking i, to be
those permatoms which were minimal in ¢/ under this ordering, Us to be those
permatoms which were minimal in 4 — U; under this ordering, etc. We would
like to be able to carry this process over to the natural consequence situation to
find, from a given natural consequence relation |, a weakly admissible sequence
U such that r=v;. Translating the first stage across presents no problem — we
can still begin by setting U = U(|~) to be the set of permatoms consistent for
. However when we try to replicate the second stage, i.e., defining a preference
order that is both irreflexive and transitive on U, we do run into trouble. Recall
that in the rational case we just defined our preference order <. from |~ by, for
01,0, € Atk
01 <~ 09 iff 01V 09 v 0.

Whilst it is true that if we defined <. in this way for |~ a natural consequence

relation then <. would be irreflexive on the set U () (since, for 6 € U, we would
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have 6 <. ¢ iff § V 0 |~ =4, which implies ¢ |~ =6 by LGE which in turn implies
0 |~ L by P-RWE, contradicting 6 € U(~)), it is not necessarily the case that
<~ would be transitive as the following example shows. Suppose L = {p,q,r}
and suppose we had a pairwise disjoint weakly admissible sequence 1, to, t3 with
pAgAT Ety, " pAgAT Etyand p Ar Aq € tz. Then it is easy to see that for
the natural consequence relation |~ defined by any such sequence we would have
PAGAT <o —pAgAT and =pAgAr <. pArAq. However, by P-LLE and P-RWE,
we have (pAgAT)V (pATAGQ) I =(pATAqg) it (pAgGAT)V (PAGAT) o =(pAgAT)
and so pAgAT <o pATrAqift pAgAT <o pAgAr. Since we have already shown
that <. is irreflexive on U () (and since clearly pAgAr | L so pAgAr € U([))
it must be that p AgAr A p A1 Aq and so <. fails to be transitive. (More
generally, for 8,,05,05 € Atl we may have §; <. s, d; = 3 and dy <. J3
for a natural consequence relation. This could not happen in the rational case.)
However we need not totally discard this definition of <. as a suitable preference
order for natural consequence relations, for it turns out that <. defined above
for |~ a natural consequence relation will be transitive on certain subsets of U(|~)
— those subsets in which all the permatoms are, in a sense to be explained below,
“comparable” with each other. In this section we will concentrate on such sets,

which we will call permutation trees.

Definition 6.1 A permutation tree (over L) is a non-empty set F C AtL of

permatoms which satisfies the following conditions:

o (i). Foranyd € F, if 6 = qi* \...ANq, then for each 1 < i < n there ezists
some &' = r{* N... A2 € F such that r; = q;, v; =1 —¢; and r;-jj = q;-j

for all 7 < 1.

e (ii). For all distinct 61,05 € F, if 61 = qi* N...Aq and 6o =r{* N...A1"
then there exists some v such that 1 <1 <n and we have ¢; = r;, ¢, =1 —v;

and q; =ry’ for all j <.
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We denote the set of all permutation trees over L by P.

We use the term “permutation tree” to describe such sets since their elements
may be thought of as corresponding to the paths through a binary tree in which
each node has two edges out of it, labelled p and —p for some p € L, and in which
every propositional variable appears precisely once in each path. So, for example,
taking L = {p,q,r}, the set Fy = {pAgAr, pAgAN—r, pA=gAT, pA—-gA T,

“pATANq, "pATA-q, “pA-rAq, opA-r A-g}is a permutation tree for L

which corresponds to the following tree diagram.

S

p
/\q N

Another example of a permutation tree over L is the set At” of atoms of L.
Clearly for any F € P we have |F| = 2/l and - \/ F. Also, by Proposition
3.15(1), we have F; = F, implies \/ F; ~ \/ F2. In the rest of this chapter, since
for F € P we will only ever be interested in \/ F up to ~ — equivalence, we may
leave this order unspecified.

We would now like to define the set of permutation trees for a given permatom
0 to be the set of all F € P to which ¢ belongs. The following more general

definition will be more useful.

Definition 6.2 For each 0 € SL, the set of permutation trees for 0, Fy, is defined
by
Fy={FeP|0~\/Fnro}.

Clearly if 0~ ¢ then Fy = F}. Also, if § € SL is non-contingent then Fy = P since
if -6 then = \/ F A0 for any F € P and so 0 ~ \/ F A6 for any F € P, while if
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F =6 then F —=(\/ F A0) for any F € P and so again 6 ~ \/ F A0 for any F € P.
What about if # is contingent? A corollary of the forthcoming Lemma 6.5 will be
that in this case a permutation tree for 6 can always be found. That lemma will
indicate the form that those trees can take. Before we give that result we shall
give a useful equivalent way of defining Fjy. We need the following definition to

express it:

Definition 6.3 Given 0 € SL and F € P, we define the set S; C AtL by
Sy ={5€F|5F0}

Note that if F = At’ then we get S; = Sp while for any F € P we have

0 =\/ S7. We may now state the following:
Proposition 6.4 Let F € P and § € SL. Then F € Fy iff \| SJ ~ 0.

Proof. We have F € Fy iff \/ F A 6 <~ 6. Hence it suffices to show that
VFAOX N ST But

VFEne <~ (\[STv\ s ne
~ (/ST no)v(=\/ST A\ 8% o)
<\ ST Ao
(since \/ S7, = =0 and so - =(=\/ S7 A\ S%, A 0))

<~ \/ sy by Theorem 3.7, since \/ S7 6.
Hence \/ F A0~ \/ ST as required. O

Given this proposition, it is now easy to see that, for 6 € At and F € P,
F € Fyift 6 € F, and thus that the set of permutation trees for a given permatom
is equal to the set of permutation trees to which that permatom belongs. For we

have F € Fy iff \/ ST < § iff v < § where « is that unique permatom in F such
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that vy F 9. If § € F then § = v and the result is clear, while if § € F then § # ~
and so it is not the case that v~ ¢ as required (since, for e.g., no initial segment
of 7 is equal to 4). We now give the promised Lemma 6.5, the full power of which
which will be needed in the proof of Theorem 6.21.

Lemma 6.5 Let 0,¢ € SL be jointly consistent and let 6 € Tyry. Then
Fony N Fy N Fs # 0.

Proof. We define F' € P by
F'=cT((5V=8)A((OAS)V—(ONG) A\ Fo)T

where Fjy is some fixed arbitrary permutation tree over L. It should be clear (see
Section 3.3 for a discussion of ¢T-trees) that F’ so defined (indeed any set of the
form ¢T'(n A\ Fo)™ for any tautology 7) is a legitimate permutation tree. We
will show that F' € Fyry N Fy N Fs which will suffice to prove the result. Note
that 0 € Ty implies that 6 = 0 A ¢. Let ¢ now stand for any sentence such that
0 1. We have

VF A & (6V=-0)A((OAS)V(OAS)) A\ Forne
S (BAONG)VHONG)) A\ Fone) v
V(26 A0 A((OAS)V (0 A) A\ Fonv)
L (A (BN V(O NG A\ Fony) v
VEAOAG)V-(OAG)A\ Fone) (6.1)

using Proposition 3.2 (j) and (u). Now, since § - 1, we have

SE(ONG)V—ONG)A\ Fond

and so, by Theorem 3.7,

§RGA(ONG)V=(0N) A\ Fonu.
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Hence from (6.1), using Proposition 3.6, we get

VF A & (26N (OAG)V=OAS)) AN\ Fone) Ve
L (S A(OAG) V(O AG) A\ Fo )V (5AD)
L V(AP VO A AN Fond), (6.2)

this last line following from Proposition 3.2(u), (j) and (h). Let us first show
F' € Fy,ie., \| F' A0~ 0. Substituting 6 for ¢ in (6.2) gives

\/F NOZ5V ((0A6)V=(0n0) A\ Fonb). (6.3)

Now, taking the right-hand disjunct from the right-hand side of the above we

have

(@A) V—(ONAG)) A\ Fond <

(0N AN Fon0) Vv (=(0Ad) A=(0A) A\ Fo n0O)
~ (OAS AN Fo) v (=0 Ag) A\ Fonb)

o ((OAG) A\ Fo) V(=0 V =) A\ Fo A0

~ (0N AN F)V (0NN Fono) v (0A=d A\ Fono)
~ (0N AN F)VOA-¢A\ Fo)V (=0A\ Fonb)

L (A A\ Fo) v (On-¢n\ Fo)

L 0N (0NN Fo) Vv (mo A\ Fo))

S

Hence, applying Proposition 3.6 to this and (6.3) gives us
\VF AOZ5v0

and so we will have shown F’ € Fy if we can show 0 V8 ~ 6. If - 6 then this will
clearly hold since in that case also - 0 V 8 while we assumed at the outset that

t/ =6. Thus we may assume that € is a contingent sentence and so r7'(0) is well
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defined. Since 6 € Tyn, we have § € Ty and so § = 7 A p for some 7 € rT'(#)* and

some (possibly empty) conjunction of literals p. Hence we have

vl = (tAp)Vve
& (rap) v\ rT(O)"
< (v \rTO)) A (=T v e v \[rT(0)7)
SEEAAVEVA(N
~ \/rTO)" < 0
as required to show F' € Fy.

Next we will show that F' € Fyny, i.e., \V F' AO N~ 0 A ¢. Substituting 6 A ¢
for ¢ in (6.2) gives

VFNONGZV(((OAS)VON) AN FonoAg).  (64)

Taking the right-hand disjunct from the right-hand side of the above we have

that

(@A) V=N A\ Fonbneg <

X (OAS AN FonOAS)V (=(0AS) A=(OAG) A\ FoNOA Q)
L ((OA) AN\ Fonong)

~ 0NN\ Fy

YN

Hence, applying Proposition 3.6 to this and (6.4) gives us
\VFNONGZSV(ONS).

Hence we will have shown F’ € Fy,, if we can show 0 V (0 A ¢) ~ 0 A ¢. This can
be done in an exactly similar way to how we showed that 6 VV 6 ~ 6 above (just

replace “6” by “60 A ¢” in the above short proof). Hence we do have F' € Fyuy.
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It remains to prove that F' € Fy, i.e., \/ F' Ad ~ . Substituting 0 for ¢ in (6.2)

gives us

\/F A~ GV (((0A)V(ONG) A\ Fond)
S

as required, since for arbitrary xi, xo € SL we have

X1V (xaAxi)~xiV(exi Axe Axr) ~ X

By putting ¢ = 6 in the above lemma we see that, if 6 is contingent (indeed
if 0 is consistent), we can find a permutation tree F for § which also belongs to

Fs, or equivalently contains 9§, for any § € Ty. We just set
F =cT((6V=8) A0V =0) A\ Fo)t

where Fy is some fixed arbitrary permutation tree over L, i.e., we take F to
contain the positive clauses (which, since we are dealing with a tautology, will be
all of the clauses) of ¢T'((0 V =) A (6 V —8) A/ Fp). Our next proposition is the

following:
Proposition 6.6 Let 0,¢p € SL. Then Fypy N Fy C Fpp—y.

Proof. Let F € Fyn, N Fy. Then we have \/ FAOAN G~ O AN g and \/ FAO X 0.

We must show \/ FAO A ¢~ 0 A —¢. Let G be any pre-ent over L. Then

Bel’(\/ FAON=¢) = Bel®(\] F A0)— Bel®(\/ F AO A )
= Bel(0) — Bel®(0 A ¢)

= Bel%O N —09).

Hence \/ F A O A —¢p ~ 0 A —¢ as required. O
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In view of Proposition 6.6 we could equally well have written in Lemma 6.5
“Fop-sNEyNEs # (7, since, by the proposition, FyrsNEFy C Fyn—y and Fyn-sNEy C
Fongp = Fyrg (since ¢ ~ x implies F, = F)). Hence Fyry N Fy = Fppr-p N Fp.

The next proposition shows us how we may express Tp via the sets S7 .
Proposition 6.7 Let § € SL. Then Ty = Uzcp, S7 -

Proof. We first show Ty € Uzcp, S5 If Ty = 0 (equivalently = —6) then this
is clear, so suppose otherwise and let 6 € Ty. Then 0 I 0 so it remains to prove
that 6 € F for some F € Fy. That this is true follows from the discussion right
after Lemma 6.5. Hence Ty C Jzcp, ST

To show the converse let § € At now be any permatom such that § € S7 for

some F such that F € Fy. Then

o R ov\/(S]—{s})  from Lemma 3.20(1)

~ \/S{

~ 0 from Proposition 6.4.

Hence ¢ 6 which gives ¢ € Ty as required. O

The next proposition gives us some more useful information about permuta-

tion trees.

Proposition 6.8 Let 7 be a conjunction of literals from distinct propositional
variables in L. Then the following are true:

(i). For all F € P, F € F, iff 6 K1 for all§ € ST, i.e., ST CT,.

(ii). For each p € L such that £p does not appear in T and for e € {0, 1},

FT/\pe g FT and FT/\p == FT/\ﬁp.

Proof. Let 7 be a conjunction of literals from distinct propositional variables in

L,sayT:qil/\.../\q;j.
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(i). Let F € P. The “only if” direction of part (i) follows from Proposition
6.7 which tells us (Jrcp S7 C T.. To prove the “if” direction suppose S =
{61,...,9,}. Then, foreach i =1,...,7, &; ;7 so §; = 7 A, for some conjunction

7; of literals from the variables in L — {qi,...,¢;}. Hence
\/ST]:“'“ \/(7/\%)*’7/\\/%-
i=1 i=1
Now, since all the ¢§; belong to the same permutation tree F, it should be
clear that - \/;_, v (indeed {7,...,7 } now looks like a permutation tree over
L—A{q,...,q;}). Hence \/ ST < 7 and so F € F, by Proposition 6.4 as required.
(ii). Let pe L—A{q,...,q;} and let F € F;ppe. We must show F € F,. Choose

5 e S7,

TApE

(which is obviously non-empty). Then, by part (i) just proved, § F7ApS,
say 0 = ¢ A... A g with ¢7) = pS. Let & € S, say &' = r{* A... Ar5. By
part (i) proved above we will show F € F if we can show ¢’ |<7. But ¢’ € F
and so either ¢’ = 4, in which case clearly ¢’ <7 as required, or ¢’ # ¢, in which
case we know (from part (ii) from the definition of permutation tree) that there
exists 1 < i < n such that 7" = ¢/~ and %% = ¢ for all k < 4. If i < j then
8"t/ 7 and so &' € ST — contradiction. Hence i > j so &' 7 again as required.

The second part of (ii) now follows from the first part just proved and the re-

marks made after Proposition 6.6, since Frp, = Frpy N Fr = Foppy N F = Fopoy,

as required. O

We remark that it is not true, in general, that Fy,s C Fy for arbitrary 0, ¢ €
SL.

Now, given a permutation tree F, consider how a pre-ent GG over L would com-
pute Bel?(\/ F A 0) for any § € SL. The effect of preceding § with the sentence
\/ F in this way is that, in evaluating Bel®(\/ F A 0), G would, firstly, generate
a complete picture of the world by “deciding” all the propositional variables of

L in the order dictated by F before then deciding if 6 is true in this world. The
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presence of \/ F here would, in fact, force Bel® to behave like a A-probability

function. Precisely we have the following.

Proposition 6.9 Let G be a pre-ent and F € P. If we define a function Bel% :
SL — [0,1]™ by setting, for 8 € SL,

Bel§(0) = Bel®(\/ F A 0),
then Bel$ is a A\-probability function.
Proof. We will show that, for § € SL,
Bel§(0) = BelZ(a) and > Belf(a) = 1. (6.5)
a€ESy acAtL
This will suffice following the representation result for probability functions (which
is easily extendable to A-probability functions) discussed in Section 2.4.
To show the first of the above two conditions we have

Belf(0) = Bel®(\/ F A0) = Y Gyr(0.t)- Belf(0)
tF\ F

= Y Gyl0.0)- Belf0)

teWL

since for all ¢, ¢ F \/]—".

We will now show that, for t € WL, if G\ #(0,t) # 0 then t = ¢, for some
a € Att (where, for each a € AtF, we define t, = {p° | a F p}). Given t, we
know that it is not the case that for all 6 € F, t = = since if it were then we
would have ¢ = L contradicting the consistency (by definition of scenario) of ¢.
Hence there exists §y € F such that ¢t t/ =dy. Now if we also had ¢ I/ §y then,
since by definition we have Ggy4(s,r) = 0 whenever both r I/ § and r t/ =6 for

arbitrary 6, ¢, s, r, we would have

G\/ ]—‘(@, t) = G6OVV(f—{50}) (®7 t) =0.
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Hence we have shown that if G\, #(0,t) # 0 then ¢ - §y for some d§y € F, and so
we must have ¢ = t, where §y = a € At" as required. So

Belf(0) = > Gyr(l,ta) - Belf (0).

acAtL

For each o € At" we have either o I 6, i.e., t, F 0, in which case Beli(&) =1,
or a b =f, i.e., t, F =0, in which case Bel{ (=0) =1 and so Bel{ (§) = 0. Hence

Belf(0) = 3 Gy #(0.1.)

a€Sy

In particular, for any o € At"

BelG Z Gyr(0,tz) = Gy #(0,t,)
BESa

hence

Bel%(0) = Z Bel%(a)

a€Sy
as required.

To show the second part of (6.5) we have

> Belf(a) = > Belf(a) = Bel¢(T) = Bel*(\| FAT) =1

acAtL Q€S

since \/ F A T is a tautology. Hence Bel$ is a probability function on SL. |

Corollary 6.10 Let G be a pre-ent and F € P. Then for all 6,¢ € SL we have
if 0 ¢ then Bel%(0) < Bel%(¢) (and so if 0 = ¢ then BelG(0) = Bel%(¢)). O

Given F € P, Proposition 6.9 says, roughly, that by preceding everything by
\/ F we turn a pre-ent’s belief function into a probability function. Similarly the
next proposition says that by preceding everything by \/ F we turn a natural
consequence relation into a rational consequence relation. This result will prove
very useful in our attempt to characterise natural consequence relations in terms
of weakly admissible sequences, since it will frequently allow us to pass from a
situation involving natural consequence relations to a situation where we are just

talking about rational consequence relations.
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Proposition 6.11 Let |~ be a natural consequence relation on L and let F € P.

If we define a binary relation |~z on SL by setting, for 0,¢ € SL,

0 broiff \|FAop o,

then f~x is a rational consequence relation. (Note that, by LGE, |~x is indepen-

dent of the order we take the permatoms in F to be in.)

Proof. We check each condition for rational consequence in turn.

REF: We have \/ F A 6 F 0 so, by SCL for |~ (see Lemma 5.11), \/ F A0 |~ 0,

i.e., 0 ~x 0 as required.
LLE: Suppose 6 |~ ¢ and 6 = . Then we have \/ F A6 |~ ¢. For all G we have

Bel°(\/ FA0) = Bel§(0)
= Bel%(y) (by Corollary 6.10)

= Bel°(\/ F Av)

hence \/ F A O~ \/ F Av. Similarly, since § = v implies 0 A ¢ = 1 A ¢, we have
(VFANO NS~ (VF AY) A ¢. Hence, by P-LLE we have \/ F A Y |~ ¢, ie.,
Y ~F ¢ as required.

RWE: Suppose 0 |~z ¢ and ¢ = . Then \/ FAO |~ pand O AP+ O Ap. We
have, for all G,

Bel°(\| FAON¢) = Belf(0 A ¢)
< Bel%(0 A1) (by Corollary 6.10)

= Bel®(\/ FAO A1)
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hence, by P-RWE, \/ F A0 |~ 9, i.e., 0 |5 ¢ as required.

AND: Suppose 0 x ¢ and 0 |~z 9. Then \/ F A0 |~ ¢ and, by RWE proved
above, 0 vy =V, ie., \| FAO |~ —¢Vih. Then, by P-AND, \/ FAO |~ ¢ A1),

ie., 0 ~r ¢ A1) as required.

CMO: Suppose 0 ~x ¢ and 0 pz . Then, by AND proved above, 0 oz ¢ A1,
ie, VFAO | ¢ A, Then by P-CMO, (\/ F A0O) A ¢ |~ 1 and so, by LGE,

VFEFANONAND) 1, ie, ON¢r) as required.

RMO: Suppose 6 vr ¢ and 0 prr —1p. Then \/ F A O ¥ =) and 0 5 ¢ gives
us 0 vxr bV ¢ by RWE, ie., \/ FAO |~ =)V ¢. Then by P-RMO we have
(VFANO) AN |~ ¢ and so, by LGE, \/ FA (O AY) |~ ¢, ie, O AN |~vr ¢ as

required.

OR: Suppose 0 vz ¢ and ¥ vr ¢. We examine two separate cases:

Case (i): Y ptr 0.
Then, by RWE and RMO, ¢ A =0 |~# ¢. Hence, by LLE, =0 A |~x ¢. From

Proposition 3.3 we have
\VFAEIAY) =\ Fnro)n(\/ Fny)
and so, from this equivalence, LGE gives us
S\ FroO AN\ FAY) o

By assumption, \/ F A0 ¢ so by P-OR, (VFAO)V (VF AY) |~ ¢ and so
VFAEVY) ¢ by LGE, ie., 8 V¢ ~x ¢ as required.

Case (i1): ¥ g 0.
Then we have \/ F A |~ 6. Also, by SCL for |~, we have \/ F A (—=¢) A 0) |~ 0.
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Therefore, as in case (i), by LGE we get =(\/ FAY)A(\/ FAO) p~ 0 so, by P-OR,
(VFAY)V(VFAO) |~ 0. Hence, by LGE, ¥ VO |~x 0 so 0V ¢ ~x 6 by LLE.
Since, by assumption, 6 |~z ¢ we get (0 V) A0 |~z ¢ by LLE. Hence, by RWE,
OV ) A O ;or =0V ¢. Now, by SCL for o,

S\ FA@VO) A AN FA@OVY)A-0) =0V 6.

So by P-OR,

\FA@v)rno)v(\/FA@OVE) A=) -0V

Hence, by LGE, (V) A (0V —0) ~x =0V ¢. So,by LLE, 0V ¢ oz =0V ¢ Using
the earlier derived 8 V ¢ |~z 6 with AND and RWE now gives the result. O

Given a natural consequence relation |~ and F € P then for each rule Ru
for rational consequence we shall write Ru” to mean “the rule Ru applied to
the rational consequence relation z". For example OR”, AND” etc. As an
initial corollary to Proposition 6.11 we can now show that if we carry over the
preference order which we defined for rational consequence relations (and which
we discussed just before Definition 6.1) to natural consequence relations then this
relation will be transitive on each permutation tree F. In the proof of this and
subsequent results it is useful to note that, given F € P and §,,6, € AtL, if
0; € F for i =1,2 then

VFEANGVE) A ((61V6)V\/(F—{61,02}) A (61 V 6s)
by Proposition 3.15(i)

~ 01 V0.
While

\/.7:/\(51\/(52)/\(52 ~ \/f/\((SQ\/él)/\(SQ Sinceél\/égrbdQ\/(Sl

\/ F né,
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(using Proposition 3.6, since (02 V 01) A 2 ~ d2)
< GV VF - (1) A6
o6y
(82 V01) A by

~ (01 V O2) A dg

Hence \/ F A (01 V 03) A =9y ~ (01 V d) A =y and so, by P-LLE, for any natural
consequence relation we have 0y V dy v =y iff \/ F A (61 V 02) |~ —da, iee.,
01 V 0y g —s.

Corollary 6.12 Let |~ be a natural consequence relation and let F € P. If we

define a relation <. on AtL by, for 6,0, € AtL,
01 <~ 09 iff 01V 0o v —0s,
then the restriction of <. to F 1is transitive.

Proof. Let d1,d2,93 € F and suppose §; V 02 |~ —d2 and 3 V 03 |~ —d3. Then, as
above, we obtain d; V ds ~r 09 and 02 V d3 oz —03. Since, by Proposition 6.11,
£ is a rational consequence relation, we may deduce (see the proof of Lemma
5.26 taking |~ to be |~z there) that d; V 3 |~z =3 which gives us the required
01 V I3 |~ =03 by P-LLE again. O

6.3 Full Transitivity

In this section we introduce our new rule (FT), make sure the rule is satisfied
for v for G a pre-ent (and hence sound also for v;) and make sure the rule is
satisfied by all rational consequence relations. It seems we are unable to present
this rule in the same simple form as the rules we have seen so far for natural

consequence. Rather, we give it using some auxiliary notation. As a first step
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along this route we now formally define what it means for one permatom to be

comparable to another.

Definition 6.13 Given 0,0, € AtL, we shall say that §; is comparable to d,
iff there exists some T a (possibly empty) conjunction of literals from distinct
propositional variables in L, some p € L which doesn’t appear in 7, and some

e €{0,1} such that & =T Ap*A... and o =T AP ™A ...

Clearly the relation described above is symmetric and so we may speak of
two permatoms “being comparable”. However the relation is not transitive, for
example, taking L = {p,q,r}, we have p A ¢ A r is comparable to —=p A ¢ A r
which in turn is comparable to p A r A gq. However p A g A r is not comparable to
pArAq. For another way of expressing comparability we have that §; and d, are
comparable iff they are distinct and Fs, N Fs, # (), i.e., they have a permutation
tree in common.

Given a consequence relation ~ on SL we define a binary relation <¢ on At~

by setting, for d;,d, € AtL,
01 =& 09 iff 01V 09 |~ —d2 and 6, and Jy are comparable.

We shall write d; <1¢, 2 to mean that d; and d, are comparable and d5 £¢ 6y, i.e.,
01 and Jy are comparable and d; V 1 ¥ —d;. Note that the relation <¢ is not
transitive since, as we have seen, the relation of being comparable is not transi-
tive. Taking |~ to be a natural consequence relation, the relation <¢ provides a
fairly intuitive and succinct way of expressing the fact that, according to |~, one
permatom is more acceptable or preferred to another in the case when the two
permatoms are comparable. What makes characterising natural consequence re-
lations so difficult is that, for them, there appears to be no such appealing way of

expressing this relation in the case when the two permatoms are not comparable.
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We now introduce our rule (FT) (which stands for Full Transitivity) using
the above notation. Let |~ be a consequence relation on SL and let <¢ be the
binary relation on AtZ defined from | as above.

(FT) Let §; € AtL fori = 1,2,3,4. If §,<°, 5, 02<1%,03, d3<1¢ 4, 01 is comparable
to 04 and at least one of the above <€ is actually an occurrence of <<, then

51 << 54.

That the relations |v; for U a weakly admissible sequence of sets of permatoms,
and, in turn, all rational consequence relations, satisfy the rule (FT) will, by

results in Chapter 5, be implied by the following proposition.
Proposition 6.14 Let G be a pre-ent over a language L. Then the relation g
satisfies (FT).
Proof. First of all note that for comparable permatoms 7,7, € AtZ we have
Bel®(y1 V v2) = Bel®(y1) + Bel®(v2) (applying Proposition 3.15(ii)) while
M V) A= ~ (V) A
~ (2 Vo) A using Proposition 3.15(i)
(R AY) V(R A A )
~ 7
Hence, for comparable permatoms 7,7, € AtZ, we have

ol V Yo I/\/G Y2 iff eithBT BelG(,}/l V 72) =0

Bel((71 V y2) A =)
Bel%(m V 12)

or Bel%(y, V ) # 0 and =0(\)

iff either BelG(’yl V) =0
Bel®(vy)
Bel® vV 0and ———— =0(A\
or Bel®(yi Vy2) # 0 an BelC(y1 V 72) (A)

iff either Bel®(y, V) =0
or Bel®(71 V y2) # 0 and for the least i

such that Bel®(y; V 7y2) # O(XY), Bel®(y,) = O(\Y).
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Now let v satisfy the hypotheses of the rule (FT). We must show that
01V 4 v —6y, i.e., that either Bel9(d; V &,) = 0 or, if Bel®(8; V d4) # 0, that
Bel®(84) = O(\Y) for the least i such that Bel®(d; V d4) # O(\?). First we shall
show that if Bel®(d;) = 0 for some j € {1,2,3} then Bel®(d;41) = 0 and so
Bel%(64) = 0 which would clearly suffice. So suppose Bel®(5;) = 0. We know
either ¢; << d;41 or 0; <€, d;41. But if §; <€ ;41 then 0,41 A2 J; and so it must
be that Bel%(8;41V ;) # 0 and, for the least i such that Bel®(5;,1V §;) # O(N\),
Bel®(8;) # O(XY), contradicting Bel%(d;) = 0. Hence we must be in the situ-
ation where §; < ;1. But now if Bel%(§;11) # 0 then Bel®(5; V 6;41) # 0
and §; < d;11 implies that, for the least i such that Bel%(d; V d;11) # O(N),
Bel%(6;11) = O(X?) which, since Bel9(§; V §;11) = Bel®(8;) + Bel®(d;41), forces
Bel®(8;) # O()\), again contradicting Bel9(§;) = 0. Hence it must be that
Bel®(6;11) = 0 as required. Hence we may assume now that Bel®(d;) # 0
for all 7 = 1,...,4. Now for arbitrary comparable permatoms 7,7y, such that
Bel®(v;) # 0 (j = 1,2) we have 1 <, 79 iff Bel%(y2) = O(X) for the least i such
that Bel®(y1 V y2) # O(X\Y). Since Bel® (v, V y2) = Bel(y1) + Bel®(ys) we have
Bel®(y1 V y2) # O(\Y) iff either Bel®(y;) # O(X\) or Bel®(vys) # O(XY). Hence
we may see that 73 <¢ 7o iff the least i such that Bel® () # O(\) is strictly less
than the least ¢ such that Bel®(y2) # O(N). For j = 1,...,4 let i; be minimal
such that Bel®(d;) # O(A\%). Then the hypotheses of the rule (FT) tell us that
we have 17 < iy < 13 < iy where at least one of the inequalities is strict. Hence

we have 11 < 74 and so d; <¢ d4 as required. O

Corollary 6.15 (i). Let U=U,... UC AtE be a weakly admissible sequence.
Then the relation |~ on SL satisfies (FT).

(i1). Every rational consequence relation on SL satisfies (FT).

Proof. Part (i) follows from Proposition 6.14 and Theorem 5.33 if U; # () for

some i while it is true trivially if ¢4; = () for all 7 (since in this case 6 |~; ¢ for all
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0,¢ € SL). Part (ii) follows from part (i) and the result (see Theorem 5.28) that
every rational consequence relation is of the form |~; for some admissible (and

hence some weakly admissible) sequence u. O

Hence the rule (FT) is sound for |~;;. We are as yet unable to show whether
(FT) follows from the other rules for natural consequence. Thus we are bound

to making the following definition:

Definition 6.16 A fully transitive (f. t. ) natural consequence relation on L is

a natural consequence relation on L which satisfies the condition (FT).

Thus Proposition 6.14 says that |~g is a f. t. natural consequence relation for
every pre-ent G, while Corollary 6.15 tells us that |~ is a f. t. natural consequence
relation for every weakly admissible sequence U and that the class of f. t. natural
consequence relations includes as a sub-class the class of rational consequence
relations. We now turn to our showing how every f. t. natural consequence relation

is of the form |v; for a weakly admissible sequence u.

6.4 The Representation Theorem

In this section we concentrate on showing how, from any f. t. natural consequence
relation v, we can construct a weakly admissible sequence U = U(}~) of sets of
permatoms such that ~=p;. During this process we shall rely heavily on the
framework set up in Section 6.2 which will often enable us to make use of our
knowledge of rational consequence relations. So let |~ be a given f. t. natural

consequence relation. As we have already indicated, our first step is to set
U =U() = {0 € AtF |5 L,

i.e., let U be the set of permatoms which are consistent for |~.

Given the binary relation <¢ defined from |~ as in the previous section, we now
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define from |~ our full preference relation <* on U in terms of <¢ as follows. For

01,00 €U,

(51 -<: (52 Zﬂ either (51 -<CN 52
or 01 <€, v and v <¢ d, for some v € U
or 61 <%, v and v <, d for some v € U

or 61 <%, v and v < 0 for some v € U.

We would now like to show that <* is a strict partial order on the set U, i.e.,
that < is transitive and irreflexive on . This is where the rule (FT) will come
in. The next lemma (which, in fact, is the only place where we use (FT)) will
make transitivity easier to see. Henceforth we shall write “d; <1< 09 <1 d3” instead

of “01 << 09, 09 < 03”7 etc.

Lemma 6.17 Let |~ be a f. t. natural consequence relation and let U = U(p),
<¢ and <%, be defined from |~ as above. Let 61,95 € U. Then &y <% 09 iff there
exist 1, ...,y €U (for some r > 0) such that §; ¢, v <&, -+ <%, 7, <€, §y with

at least one of the <€, a <. (Thus <%, looks like the “transitive closure” of <¢,.)

Proof. The “only if” direction is clear from the definition of <* while for the
“if” direction the result is clear in the case r < 1, again from the definition of

<* . Consider the case r = 2, i.e., suppose there exist v;,v2 € U such that
01 <UL 71 <% 72 <L 02

where at least one of the occurrences of <¢, is actually an occurrence of <¢,. (So in
fact we have either 0, <€, v; <* 09 or §; <¥ 72 <% d9.) If §; and J, are comparable
then, by the rule (FT), we have §; <¢ 02 and so 6; <%, dy as required. If 4; and
09 are not comparable then we must have either d; and 5 are comparable or 7,

and 0, are comparable. The reason for this is as follows. We know ¢; and v, are
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comparable, so there exists 7 a (possibly empty) conjunction of literals, p € L
and € € {0,1} such that §; =7 ApA... and 73 =7 Ap' "¢ A.... Now we know
v is comparable to ;. If 75 and ; are comparable then we are done, so suppose
79 is not comparable to ;. Then all this forces 45 to be of the form 7 Ap“ A .. ..
Also we have that dy is comparable to s, so, since we are assuming ds is not
comparable to 01, we are forced to conclude that 9o = 7 A p° A ... and so 0 is
comparable to v; as required. Now, returning to the proof of the lemma, suppose
we are in the situation where d; and 5 are comparable. We have §; <€, v; <€ 7o
where none, one or both of the <¢,’s may be a <¢. Since 91,71, 72 are mutually
comparable they must have at least one permutation tree in common. Let F be
such a tree. Suppose we are in the situation where none of the <(¢’sis a <¢. Then
we have v, V 01 ¢ =1 and 75 V 1 B¢ —y1. Hence, by P-LLE, v V 61 ¥ =07 and
Y2 V1 beF —=y1. Then, since ¢ is a rational consequence relation, we have (from
Lemma 5.25(4)) 72 V 01 ¢+ —d1 and so, again by P-LLE, 75 V 61 |56 —6;. Hence
we have d; <% 5. By again using the fact that |~x forms a rational consequence
relation it is easy to see that in the case where one or both of the <1¢’s is a <¢, we
get 07 << 9. Hence we have that §; <1¢, v9 <1¢ d where at least one of these <1¢’s
isa <¢,i.e., 07 < 09 as required. In the case where v, and ¢, are comparable we
can follow the above line of reasoning to show d; <I¢, v, <€ d where at least one of
these <1¢’s is a <¢,, which again gives §; <*, do. We have shown that if there exist
Y1, V2 € U such that d; <€ 1 <€ 72 <€ b9 with at least one <€, a <¢ then &; <* 9s.
This suffices to show the “if” direction since any chain §; <1< vy < - - - << 7, <€ 09

(with at least one ¢ a <¢) may now be “whittled down” to d; <% Js. O

Lemma 6.18 Let |~ be a f. t. natural consequence relation and letU = U(~) and
<* be defined from |~ as above. Then the relation <%, is transitive and irreflexive

onlU.

Proof. Given the representation of <* proved in Lemma 6.17, transitivity is
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easy to see. (In fact the relation is still transitive on the whole set At when we

(13 2

replace “...some v € U ...” by “...some v € AtL ...” in each of the clauses
in the definition of <*.) To prove irreflexivity, we will show that, given § € U,
each of the four clauses in the definition for § <* ¢ is impossible. Firstly, o <¢ ¢
is impossible since, by definition, no permatom is comparable to itself. Secondly
suppose that there existed v € AtL such that § <€ v <¢ 6. Then § <1¢ 7 says that
YVt =6 while v <€, § says that 7V |~ =0, giving a contradiction. By a similar
argument there can be no v € AtE such that § <¢ v <1, 4. Finally suppose there
was some v € AtL such that § <¢ v <¢ 6. Let F be a permutation tree which &
and - have in common. Then § <¢ v says that  Vy |~ =y and so § Vv vz =7,
while v <¢ § says that vV & |~ = and so vV § |~ =6, equivalently (by LLE”)
§V vy b —6. Hence, using AND”| we get § Vv pvzr =0 A =y and so using this
together with Vv vz 6 Vy (REF?), AND” and RWE” yields 6 Vy |~z L which
itself implies (from Lemma 5.25(3)) that 0 )~z L and so § |~ L by P-LLE. This,

however, contradicts § € U. Hence § £* ¢ as required. a

Hence we finally have in place a suitable preference order on the set . Now,
analogously to the rational case, define a sequence of sets of permatoms Uy, U, . ..
inductively by setting, for each 1 =1,2,.. .,

U={5cAtl|selU— UL{j and 0 is minimal in U — UL{]- under <7}

j<i j<i
By the finiteness of AtL there exists k > 0 such that U; = () for all i > k. Hence we
arrive at a finite sequence U = L_{)(}v) = U, Uy, ..., U, where k > 0, of pairwise
disjoint, non-empty sets of permatoms with & = Ule U;. Tt makes sense to talk

about minimal elements of the sets U — | J._.U; since, by Lemma 6.18, <* is a

j<i
strict partial order on the set &. We will shortly show that the sequence U is

weakly admissible but before that we need the following result.



CHAPTER 6. CHARACTERISING F.T. NATURAL CONSEQUENCE 231

Lemma 6.19 Let |~ be a f. t. natural consequence relation and let U = U(|~) be
defined from |~ as above. Then, for all € SL,UNTy =0 iff 0 |~ L.

Proof. Suppose Y NTy = (). Choose F € Fy. Then, by Proposition 6.7,
UNST =0, equivalently § ~ L for all 6 € S7. Now § € S7 implies § € F,
equivalently \/ FAd~ 4. Hence, by P-LLE we have, for all 6 € S7 , § |~» L which
gives, using OR” repeatedly, \/ S7 I~z L. Hence, by LLE”, we get 6 jvx L and
so, since F € Fy, i.e., \/ F A0 <0, we conclude that 6 |~ L by P-LLE. For the
converse direction we may just follow the above chain of reasoning backwards,
noting that \/S7 |~ L implies § vz L for all 6 € S7, using Lemma 5.25(3)
and LLE”. O

Proposition 6.20 Let |~ be a f. t. natural consequence relation on L and let the

sequence U = U([~) be defined from |~ as above. Then U is weakly admissible.

Proof. We check that the sequence Ui, ... Uy satisfies the condition (WA).
Let 7 be a (possibly empty) conjunction of literals from distinct propositional
variables in L and let p be a propositional variable which does not appear in 7. If
U; NT, = ( for all ¢ then we are done, so suppose otherwise and let 7 be minimal
such that ; N T # 0. We are required to show U; N (Trpp U Trp-p) # 0. If both
UNTpp =0 and UNT, 5, = 0 then by Lemma 6.19 we must have both 7Ap |~ L
and 7 A —p |~ L. Now

TA=p ~ TA=pA-p ~ (T Ap)A(TA-p)

from Proposition 3.3. Hence from 7 A =p |~ L1 and LGE we get
(T Ap) A (T A=p) p L. Hence, using P-OR with 7 A p | L we get
(tAp)V (T AN=p) | Landsort |~ L by P-LLE. Hence, by Lemma 6.19, UNT, =
0, contradicting U; N T, # 0. Hence U N (Typp U Trp—p) # 0. So let § € AtL be a

minimal element of UN (T 1, UTp-p) under <¥, say dg € Trppe0 Where €g € {0, 1}.
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We will show that dp € U; which will suffice to prove the result. Suppose for con-
tradiction that 0y & U;. If 0y € U; for some j < ¢ then U; NT; # O for some j < ¢
(since Trppe0 C T7 by Proposition 5.18) contradicting the minimality of ¢. Hence
it must be the case that there exists v € U — Uj<z. U; such that v <* dp. We
will now show that, under these assumptions, it cannot be the case that 7 = ().
For suppose we did have 7 = () and so dy = p® A ... and Jy is minimal under
<5 inUN(T,JT,). Then (by Lemma 6.17) v <, &, implies that there exist
vi,...v. € U (for some r > 0) such that v <€ vy Q% ... <% v, <€ Jp where at
least one of the <1¢’s is actually a <¢. Each of the permatoms in this chain is
comparable with its successor and so must begin with a £p. In particular we
must have y € U N (T, UT.,) and so &y is not minimal in this set — contradiction.
Hence for the rest of this proof we may assume 7 # (). Say 7 = ¢i* A ... A g’

(I > 0). Given that ¢y is not minimal under <*, in & — |J,_,U; we can be in

j<t

one of two situations: either there exists v € U — |J,_,U; such that v < Jy or

1<
there is no such v and the only elements which are keeping d, out of U; do so
“indirectly”, i.e., for any v € U — Uj<i U; such that v, <X dp we have v; is not

comparable to dy and so there exists 72 € U — |J,;_; U; such that v <% v <€, d.

J<i

We examine these two cases separately.

Case (i): There exists v € U — UMMJ- such that v <¢ dq

Firstly let us assume there exists v € U — |J._,U; such that v <% & (so

j<i
v is comparable to §y and vV dy |~ —dg). If v = 7 A £p A ... then we have
v <5 0o and v € U N (Trpp U Tra-p) contradicting the minimality in this set of
do. Hence we must have v = ¢i* A... Ag:= A ... for some 1 < r < I. Now
choose F € Fs, N F, (so &g € ST). By P-LLE with vV dy |~ —dy we have
YV & bor —8p. We would like to show now that vV v vz = for allv € S, So

let v € S7. If v = §, then we are done so suppose v # ;. If we can show that

vV oo e s —do then from this and vVdy v —dp we may apply a contrapositive form
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of Lemma 5.25(4) to the rational consequence relation f~# to obtain our desired
conclusion. So suppose firstly that v € U, i.e., v |~ L. Then we have v |~vxr L by
P-LLE. Now if it were the case that vV §y z =y then, applying Proposition
5.25(2) to the rational consequence relation f~z would give vV §y por L. Then,
applying Proposition 5.25(3) (and LLE”) to this would yield & # L and so
do I~ L by P-LLE, contradicting dy € U. Hence if v & U then v V dy prr —do
as required. On the other hand suppose v € U. Then we have v - 7 A p° for
some € € {0,1} and also v € F € Fjs,. By repeated use of Proposition 6.8(ii)
we know Fs, C Frppeo = Frppe. Hence v € F for some F € F e and so, by
Proposition 6.7, v € Typpe. Thus if vV §g fvr =g then vV §y |~ =6y by P-LLE,
ie., v <% &y, which gives v <* Jy which contradicts the minimality of §y in
UN (Trpp UTra-,). Hence in this case also we have v V § per —dy as required.
Thus we have shown vV v vz —w for all v € S7. Hence vV v |~z v (using
REFZ, AND7, RWE”) for all v € S7, and then repeatedly using OR” followed
by LLE” gives us vV \/ S 7. Now we have

VFEAaVVSEH =~ (v SHVVEFE-{rusH) (v s7)
~ 7\/\/Sf
SR A (6.6)

since F € F5, C F, so 7~ \/ S7 by Proposition 6.4. While also

\/f/\(fy\/\/Sf)/\’y&\/fA’y&’yé(fva)/\fy. (6.7)

Hence from vV \/ S7 |~z v we may apply P-LLE to get vV 7 |~ . We will now
show that v <* n for all n € T}, thereby showing that U; N T, = () which will
give the required contradiction to show 0y € U;. Solet n € T, son =1 A p for

some p and 7,n are comparable. Then, by the rule (A) from Lemma 5.11, from

YV T vy we get YV (T Ap) vy, ie, vV ey, We have

(YVn) Ay &y A& yA-m
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(by Theorem 3.7 since v, 7 comparable implies v - —n)
~ (YA V(Y A A )
~ vV Ao
Hence we may apply P-RWE to 7V 7 |~ 7 to obtain vV n |~ —n which means

v <& n and so v <*, n as required. Hence &g € Uy N (Trpnp U Trpyp) # 0.

Case (ii): For no v € U —J._,U; do we have v <¢, dy.

J<i

Suppose for no vy € U — |J,_,;U; do we have v <% dp. Then &y ¢ U; implies

J<t

that there must exist v1,7 € U — |J,;_; U; such that v <% v, <€, & with v and

j<i
dp not comparable (otherwise v; < dp). We have that v9 and dy are comparable
and 0 V vo % —y2. If 79 = 7 A £p A ... then 75 must be a minimal element,
under <*, of U N (Trpp U Tra—p) (since &g is) and so, by case (i) proved above
(just substituting v, for &), 71 <* n for all n € T, and so U; N T, = B giving
the required contradiction. So now suppose 75 = ¢i* A... A g™ A ... for some
1 <r <1l Choose F € F5, N F,,. By P-LLE with dy V 72 p =7, we get
8o V Yo btr —y2. We would now like to show v V vy ptr =y, for all v € S7. So
let v € S7. If v = §, then we are done so suppose v # . As in case (i) we
get vV dg her =g and so, from this and dy V v ¥ —y2 we may apply another
contrapositive form of Lemma 5.25(4) to ~x to obtain our desired conclusion.
Given that v V yo ptr =y, for all v € ST we may then repeatedly apply the rule
DR followed by LLE” to obtain 75 V'\/ S7 ¢z —2. Now, similarly to equations

(6.6) and (6.7) above, we can show

\/]:/\(72\/\/57?)&72\/7'
and
VFANVN ST A& (12 V 1) A,

which together imply also

\/fA 72\/\/5' A=Y~ (2 VT) A=y,
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Hence we may apply P-LLE to v, V \/ S7 47 =2 to obtain v, V 7 ¢ =y,. Now
let n € T, son = 7 A p for some p and 72,n are comparable. As in case (i) we
will show that n & U;, proving the contradiction U; N'T, = (). By rule (B) from
Lemma 5.11, from 75 V 7 ¢ =y we get v2 V (T A p) Bt =9, e, 12 V1 —a.
Hence, by LGE, nV 72 ¢ =72, i.e., 72 Q¢ n, and so we have 7 <€ v9 <€, n which

gives 71 <* n and so n € U; as required. O

We are now finally in a position to prove our representation result. Many of
the steps involved in the following proof closely parallel those of the proof of the

corresponding result (see Theorem 5.28) for rational consequence relations.

Theorem 6.21 Let |~ be a f. t. natural consequence relation. Then there exists

a weakly admissible sequence U such that ~=pg

Proof. Let U = U(l~) = Uy, ... .U, C AtE be defined from |~ as in the above
process. We claim that this sequence, which is weakly admissible by Proposition

6.20, suffices, i.e., that we have, for all ,¢ € SL,

0~ ¢ iff either U;NTy=0 for all i
or  U;NTyr-y = 0 for the least i such that U; NTy # ()

For the “only if” direction suppose 6 |~ ¢. If Ui NTy = () for all i then we
are done, so suppose otherwise and let ¢ be minimal such that U; N Ty # 0.
If Tor-g = O (equivalently = —(0 A —¢)) then the result is clear, so suppose
otherwise and let § € Tpr—y. We will show that 6 & U; and so U; N Tyn-s = 0.
Choose F € Fypg N Fy N Fs5. Such an F exists by Lemma 6.5 and the discussion
following Proposition 6.6. Then, by P-LLE, 6 |~ ¢ iff 6 |~z ¢. Now § € Tyn—
implies 6 - —¢ and so by RWE” we have § |~z —d. Then, by LLE”, we get
\/ ST I —6. Now if S = {d} this means we have § |~ =6 and so § = by
P-LLE which gives 6 |~ L by P-RWE. Hence in this case we have § € U and so

§ € U; as required. Now suppose S7 = {d,71,...,7 } where r > 0. Then we have
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SV V...V r =8 and so, by LLEZ | (v V&) V...V (7, V) vz —6. Hence,
using DR” repeatedly, we must have 7, V § |~# =6 for some 1 < [ < r. Now if
v & U then v |~ L so vy vz L by P-LLE. This together with 7, V ¢ vz =4
would give 0 vz L (mainly by (2) and (3) of Lemma 5.25 applied to |~x), and
so 0 ) L by P-LLE. Hence again § ¢ U which gives § € U; as required. Now
suppose 7; € U. Then, by the minimality of i, we have v, ¢ U; for all j < 4
(since Sy C Ty by Proposition 6.7 so ; € Tp). Also, since 7, V & vz —=d implies
Y Vo =6 by P-LLE, we have v, <¢ § and so, if 6 € U then 0 is not minimal in
Uu— Uj<i1/{j and so again 0 ¢ U; as required.

For the “if” direction, first suppose U; N1y = O for all i, i.e., U N'Ty = (.
Then, by Lemma 6.19, we have 6 |~ L and so, by P-RWE, 0 |~ ¢ as required.
So now suppose U NTy # () and let 7+ be minimal such that U; N Ty # (). We will
show that if 0 | ¢ then U; N Ty—, # . By Corollary 5.35, since the sequence u
is weakly admissible, ¢ is also minimal such that U; N (Tyrg U Tpr-g) # 0. Let & €
UiN (TyrpUTpn-e). Then clearly 6o must be minimal in U N (TyrsUTps-g). Choose
F € FypnsNEyNFs, (and recall that any such F is also in Fyn-,). Then, by P-LLE,
Ot ¢ iff 0 ptx ¢ which is equivalent to \/ S7 b ¢ by LLEZ. We know that dy is
a minimal element in & NSy under <*, since Sy = SHFM U ng\ﬂqs C Tong U Thn-¢
by Proposition 6.7. Let d1,...,d, € AtL be the other (if any) permatoms which
are minimal under <* in U N Sy. For all v € S5 — {do,d1,...,0,} we have
d; Vv g —y for some j € {0,1,...,7r}. This is clear if v € U (since otherwise
would be one of the minimal elements) while if v & U then v |~ L, equivalently
v r L, and so dp V v g =y by Lemma 5.25(6). Hence we may repeatedly
apply Lemma 5.25(5) to \/ S5 bt ¢ to obtain 8oV &, V... V6, ptr ¢, which means
we must have 6, p2r ¢, equivalently (by P-LLE) 6, |t ¢, for some 0 < y < r (since
otherwise we would be be able to derive 0y V 61 V ...V d, [~z ¢ by repeated use
of ORY). If 6, ¢ then 6, |~ ¢ by SCL. Hence we must have §, I/ ¢, i.e., d, F —¢
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and so 0, € Typ-g. If y =0 then §, = dg € U; N Tyr-p. Hence U; N Tpr-p # 0 as

required. If y # 0 then if §, ¢ U; there must exist some A € U — |J._,U; such

j<i
that A <% d,. But then we have A <* 4, << 69 so A <, dy which implies oy & U;
— contradiction. Hence it must be the case that d, € U; and so U; N Tys-y # 0 as

required. O

Thus we have characterised f. t. natural consequence relations in terms of
weakly admissible sequences of sets of permatoms. We straight away give the

following corollary.

Corollary 6.22 Let |~ be a non-trivial f. t. natural consequence relation on L.

Then there exists a pre-ent G (possibly over a larger language than L) such that,
forall0,¢ € SL, 0 |~ ¢ iff 0 ¢ o.

Proof. Let |~ be a non-trivial natural consequence relation on L and define
U= L?(}N) =Uy, ..., Uy from |~ as in the above construction process. Then, by
Theorem 6.21, for all 0,¢ € SL, 0 |~ ¢ iff 0 vy ¢. IfU; =D foralli =1,... &
then clearly pv; (and hence |v) is the trivial f. t. consequence relation on L —
contradiction. Hence U; # () for some 7 and so we may conclude from Theorem

5.33. .

Hence we have a representation result for f. t. natural consequence relations
in terms of the family of relations |~¢ for G a pre-ent. The next section brings
in one of our earlier results to characterise the sub-family of relations |, for z

an ent.

6.5 Ents and F.T. Natural Consequence

The results of the previous section have shown the correspondence between f. t.

natural consequence relations and the family of consequence relations |~ for G
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a pre-ent. A natural question to ask is: Does there exist a special sub-class of f.
t. natural consequence relations which corresponds to the family of consequence
relations v, for z an ent? In this section we give a positive answer to this
question. This answer will draw on the main result — Theorem 4.1 — of Chapter
4. It turns out that all we need to do to obtain this correspondence is add a single

rule to the rules we already have for f. t. natural consequence.

Theorem 6.23 Let z be an ent over L. Then the consequence relation |~, is
a non-trivial f. t. natural consequence relation which, in addition, satisfies the

following rule

ONG I~ L
dNO L

Conversely, given a non-trivial f. t. natural consequence relation |~ on L which

(Consistency Commutativity(CCM))

also satisfies CCM, there ezists an ent z (over a larger language than L) such

that, for all 6, € SL, 0 |~ ¢ iff 0 |~. ¢.

Proof. Let z be an ent over L. By Theorem 5.10 and Proposition 6.14 we know
that, for any pre-ent G over L, |~¢ is a f. t. natural consequence relation while
we also know that |~¢ is non-trivial (see the discussion following Definition 5.29).
Hence certainly |~, is a non-trivial f. t. natural consequence relation. To show
that |~, satisfies CCM we have, once again for any arbitrary pre-ent G and for
any 1 € L, ¢ g L iff Bel% () = 0, since if 1 ~g L and Bel(v)) # 0 then, by

definition of |~¢, we must have

Bel®(p A=L)  BelC(y))
Bel¢(y)  Bel®(y)

—1=0(\)

— contradiction. Hence ¢ |~ L implies Bel®(1)) = 0. The converse direction is
immediate. So suppose 0 A ¢ |~, L and so Bel*(60 A ¢) = 0. Then, by Theorem
2.11 together with Proposition 2.9, we have Bel?(¢pAf) = 0 which gives pA0 |~, L

as required.
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To show the converse direction let |~ be a non-trivial f. t. natural consequence
relation on L which satisfies CCM. Then, by Corollary 6.22 there exists a pre-ent
G (possibly over a larger language than L) such that, for all ¢,y € SL, ¢ |~ x
iff 9 g x. Now, for this G and any 0, ¢ € SL we have that Bel“(§ A ¢) = 0
implies Bel%(¢ A §) = 0. To see this suppose Bel%(§ A ¢) = 0. Then we must
have 6 A¢ |~ L and so (since we may clearly assume L € L) OA¢ |~ L. Since |~
satisfies CCM this gives p A0 |~ L and so ¢ A0 |~¢ L. Hence, following the above
discussion, we conclude Bel%(¢ A 0) = 0 as required. Hence we see that Bel®,
on its restriction to SL, satisfies the hypotheses of Theorem 4.1 and so we may
apply that theorem (even though G is defined over a larger language than L — see
the discussion just before Lemma 4.2) to assert the existence of an ent z (defined
over a larger language than L) such that, for all ¢ € SL, Bel*(1)) = Bel®(y).
Thus we have, for all 0,¢ € SL, 0 |~, ¢ iff 0 |~¢ ¢ iff 0 |~ ¢ as required. This

concludes the proof. O

We close this section with the observation that every rational consequence
relation satisfies CCM, which is a special case of LLE. So the class of f. t. natural
consequence relations which satisfy CCM still contains all rational consequence

relations. Example 5.7 shows that the converse is false.

6.6 Conclusion

In the first half of this thesis we have reviewed the pre-ent and ent models of
belief and examined the logic of pre-ents and ents. In particular we have given a
characterisation of the relation 6 [~¢ iff Bel(0) < Bel(¢) for all pre-ents. We have
also shown the essential difference, at the level of their belief functions, between
the classes of pre-ents and ents. In the second half of this work we have defined a

new class of consequence relations — that of fully transitive natural consequence
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relations — which is more general than the class of rational consequence relations,
and shown how this class may be characterised in terms of pre-ents. We have
also characterised a class which lies between the two in terms of ents. Much of
the material in this thesis has been of a syntactic nature. It remains to find a
truly adequate semantics both for the relation & and for f. t. natural consequence
relations. Another outstanding problem is to show whether or not the rule (FT)
follows from the rules for natural consequence. We would also like to be able to
give this rule in a simpler form than it stands at the moment, but for now we

content ourselves with the results presented here.
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