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Abstract. We provide a formal study of belief retraction operators that do not neces-

sarily satisfy the (Inclusion) postulate. Our intuition is that a rational description of belief

change must do justice to cases in which dropping a belief can lead to the inclusion, or

‘liberation’, of others in an agent’s corpus. We provide two models of liberation via retrac-

tion operators: σ-liberation and linear liberation. We show that the class of σ-liberation

operators is included in the class of linear ones and provide axiomatic characterisations for

each class. We show how any retraction operator (including the liberation operators) can

be ‘converted’ into either a withdrawal operator (i.e., satisfying (Inclusion)) or a revision

operator via (a slight variant of) the Harper Identity and the Levi Identity respectively.
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1. Introduction

Formal modelings of rational belief change are inevitably interested in plau-
sible descriptions of the process of dropping beliefs. The AGM framework,
named after its originators Alchourrón, Gärdenfors and Makinson [1, 8],
characterises belief contraction via a set of postulates. One of these, (In-
clusion), states that the belief set that is the result of contraction must be
included in the belief set prior to contraction. Justifications for (Inclusion)
are hard to find – it is usually just taken for granted. But, there are sit-
uations in which the removal of a belief might lead to the inclusion of new
ones. Consider an agent that keeps track of information received and which
has received both ¬φ and then φ over a period of time. When it draws
inferences from this set of information, it prioritises more recent information
and hence does not infer ¬φ. But information that causes it to retract φ
can be viewed as also leading to either an increase in the plausibility of ¬φ
or even to a belief in ¬φ and other beliefs that were blocked by φ. A similar
situation occurs in settings involving default reasoning [16]. If an agent was
committed to a default rule that sanctioned belief in φ provided it was con-
sistent to assume ψ, and also believed ¬ψ to be true, it would be unable to
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apply the default rule and would consequently not believe φ. Retraction of
the belief ¬ψ makes the default rule applicable, thus sanctioning belief in φ.

We believe that the overriding messages from examples like these is that
removing one belief might remove the grounds for withholding another. That
is, when a ‘blocking’ belief is removed from an agent’s belief corpus, so are
the reasons or arguments against other beliefs which the agent had not pre-
viously entertained. Such a model is in the spirit of a foundational approach
to belief change [5] and this is as it should be, since an agent’s corpus is
most plausibly viewed as a set of beliefs along with the reasons for holding
them. Thus, belief retractions can be ‘liberating’: beliefs which were blocked
are ‘set free’. In this paper, we start from a set of basic postulates for re-
traction which excludes (Inclusion) and also the much-debated postulate of
(Recovery). The broad class of operators so defined is designed to include
the ‘traditional’ operators of AGM contraction and withdrawal [13], but our
main focus is to study those retractions which can be viewed as liberation
operators. We do not aim to jettison the Principle of Minimal Change in this
study – the intuitions there are certainly worth retaining. Doing justice to
that particular methodological principle – while not ignoring other equally
important ones1 – and rejecting (Inclusion) will be an objective of ours. A
formal argument which supports our pre-theoretic intuitions is that it is well-
known that when defining a revision operator ∗ from an AGM contraction
operator ÷ via the Levi Identity ([8], see also Sect. 5.2 of this paper), ÷
isn’t required to satisfy (Recovery) to ensure ∗ satisfies the AGM revision
postulates. Less widely acknowledged is the fact that ÷ doesn’t have to
satisfy (Inclusion) either. That is, if ÷ is a retraction and ∗ is defined from
÷ via Levi then ∗ is a partial meet revision.

We begin in Sect. 2 by formally defining retraction operators. In Sect.
3 we provide two models of liberation via retraction operators: σ-liberation
and linear liberation. Each of these utilises a finite sequence of sentences
which guides the operation of belief removal. Though they differ in the
way they utilise the sequence, we will show that the class of σ-liberation
operators is included in the class of linear liberation operators and provide
axiomatic characterisations for each class. We also axiomatise a number of
subclasses of linear liberation. Sect. 4 is devoted to some weaker versions of
the (Inclusion) postulate. In Sect. 5 we show how a given retraction operator
can be ‘converted’ into either a withdrawal operator (satisfying (Inclusion))
or a revision operator using (a slight variant of) the Harper Identity and the

1Such an approach is explicit in the work of Rott and Pagnucco[17], and Meyer et al.[14]
where the Principle of Minimal Change gives way to other methodological principles.
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Levi Identity respectively. We briefly conclude in Sect. 6 before finishing off
with some ideas for further work in Sect. 7.

We assume a propositional language L generated by finitely many propo-
sitional variables. We use |= to denote classical entailment and Cn to denote
the classical logical consequence operator; �,⊥ have their usual meanings.
We assume that the object of change is a consistent belief set K i.e., a deduc-
tively closed set of sentences. While this is not always an explicit assumption,
it is almost always intended to be the case. We take K to be arbitrary and
fixed throughout. As is usual we use K+φ to denote Cn(K ∪{φ}). The set
of propositional models of K will be denoted by M(K).

2. Postulates for retraction

We first present the basic AGM postulates, which characterise partial meet
contraction [1]. We use K � φ to denote the result of removing the sentence
φ from K.

(L1) K � φ = Cn(K � φ) (Closure)

(L2) If �|= φ then φ �∈ K � φ (Success)
(L3) If φ �∈ K then K � φ = K (Vacuity)
(L4) If |= φ1 ↔ φ2 then K � φ1 = K � φ2 (Extensionality)

(L5) K � φ ⊆ K (Inclusion)
(L6) K ⊆ (K � φ) + φ (Recovery)

(Recovery) has already been seen as problematic (e.g., [9, 13]). Following
[13], we call any operator which satisfies (L1)–(L5) a withdrawal operator.
We want now to go a step further and shed (Inclusion) as well. However we
keep the following basic condition, which follows from (L1), (L5) and (L6):

K � � = K (Failure)[7]

Definition 2.1. Let K be a belief set and � be an operator for K. Then �
is a retraction operator (for K) iff � satisfies (L1)–(L4) and (Failure).

3. Models of liberation

We now present two models of liberation operators; each will be presented
in terms of finite sequences of sentences. The class of liberation operators
generated by the second includes that generated by the first.
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3.1. σ-liberation

In our first model, the central intuition is that both the agent’s set of beliefs
and the way it removes beliefs are formed on the basis of the information
that it has received over the course of its intellectual career. We assume the
agent has at its disposal a finite belief sequence σ = (α1, . . . , αn) of sentences,
with αn being the most recent information the agent has received2. What
beliefs is the agent committed to on the basis of σ, i.e., what is the belief set
Kσ associated with σ? An obvious answer would be to take the set [[σ]] of all
the sentences appearing in σ and to then close under Cn. The problem with
this answer, of course, is that we would like Kσ to be consistent, and it could
well be that [[σ]] is inconsistent. Instead we use the priority of information
encoded in σ to help us – initially – pick out consistent subsets of [[σ]]. We
define the increasing sequence of sets Γi(σ) inductively by setting Γ0(σ) = ∅
and then, for each i = 0, 1, . . . , n− 1,

Γi+1(σ) =
{

Γi(σ) ∪ {αn−i} if Γi(σ) ∪ {αn−i} �|= ⊥
Γi(σ) otherwise

That is, starting with αn, we work our way backwards through the sequence,
adding each sentence as we go, provided it is consistent with the sentences
collected up to that point. We then take Cn(Γn(σ)) to be the belief set
associated with σ.

Definition 3.1. Let K be a belief set and σ = (α1, . . . , αn) a belief sequence.
We say σ is a belief sequence relative to K iff K = Cn(Γn(σ)).

Example 3.2. Suppose σ = (¬p ∧ ¬q, p, p → q) where p and q are dis-
tinct propositional variables. Then Γ0(σ) = ∅, Γ1(σ) = {p → q}, Γ2(σ) =
{p, p→ q} = Γ3(σ). Hence the belief set K associated with this σ is given
by K = Cn(Γ3(σ)) = Cn(p∧ q). Note how belief in the first/oldest sentence
¬p ∧ ¬q in σ is suppressed in particular by the more recent sentence p.

Given a belief sequence σ relative to K, we want to use σ to define an
operation �σ for K such that K �σ φ represents the result of removing φ
fromK. If φ is a tautology we just set K �σ φ = K. Otherwise we introduce
sequences of sets Γi(σ, φ) inductively by setting Γ0(σ, φ) = ∅ and then, for
each i = 0, 1, . . . , n− 1,

Γi+1(σ, φ) =
{

Γi(σ, φ) ∪ {αn−i} if Γi(σ, φ) ∪ {αn−i} �|= φ
Γi(σ, φ) otherwise

2The sentences can stand for anything, not just a record of observations. The main
thing is that we have a linearly ordered/prioritised set of sentences. Such a treatment is
reminiscent of [3]. See also [15].
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That is, starting at the end with αn, we work our way backwards through the
sequence, adding each sentence as we go, provided adding it to the sentences
collected up to that point does not lead to the inference of φ. Note that
Γi(σ) = Γi(σ,⊥). We then set

K �σ φ =
{
Cn(Γn(σ, φ)) if �|= φ
K otherwise

Definition 3.3. Let K be a belief set and � be an operator for K. Then
� is a σ-liberation operator (for K) iff � = �σ for some belief sequence σ
relative to K.

Example 3.4. Suppose K = Cn(p ∧ q) and let σ from Example 3.2 be
the belief sequence relative to K. Suppose we wish to remove p. We first
compute Γ3(σ, p). We have Γ0(σ, p) = ∅, Γ1(σ, p) = {p→ q} = Γ2(σ, p) and
Γ3(σ, p) = {¬p ∧¬q, p→ q}. Hence K �σ p = Cn(Γ3(σ, p)) = Cn(¬p∧ ¬q).
Note how, at the second stage, p is nullified, which leads to the reinstatement,
or liberation, of ¬p ∧ ¬q.

As the above example shows, σ-liberation operators do not necessarily
satisfy (Inclusion). What properties are satisfied by σ-liberation? Well,
first of all, we can confirm that σ-liberation is indeed a retraction operator
according to our basic definition:

Proposition 3.5. Every σ-liberation operator satisfies the basic retraction
postulates — (L1)–(L4) and (Failure) — and so is a retraction operator.

Proof. Let σ = (α1, . . . , αn) be a belief sequence relative to K. We check
that �σ satisfies each postulate in turn.
(L1) K �σ φ = Cn(K �σ φ) If |= φ then K �σ φ = K and the rule holds
since K is a belief set and so K = Cn(K). If �|= φ then K �σ φ =
Cn(Γn(σ, φ)) and the rule holds by the idempotence of Cn.
(L2) If �|= φ then φ �∈ K �σ φ If �|= φ then K �σ φ = Cn(Γn(σ, φ)). By an
easy inductive proof φ �∈ Cn(Γi(σ, φ)) for all i = 0, 1, . . . , n. In particular
φ �∈ Cn(Γn(σ, φ)).
(L3) If φ �∈ K then K �σ φ = K Suppose φ �∈ K. Then �|= φ and so K �σ φ
= Cn(Γn(σ, φ)). Meanwhile K = Cn(Γn(σ)), and so φ �∈ Cn(Γn(σ)). We
will show, by induction on i, that Γi(σ, φ) = Γi(σ) for all i = 0, 1, . . . , n.
For i = 0 we have Γ0(σ, φ) = ∅ = Γ0(σ), and so the result is certainly
true in this case. Now, for the inductive step, let 0 ≤ i < n and suppose
Γi(σ, φ) = Γi(σ). We must show Γi+1(σ, φ) = Γi+1(σ). We consider two
cases.
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Case (i): Γi(σ) ∪ {αn−i} �|= ⊥.
Then Γi+1(σ) = Γi(σ) ∪ {αn−i} = Γi(σ, φ) ∪ {αn−i}. Since Γi+1(σ) ⊆ Γn(σ)
and since φ �∈ Cn(Γn(σ)), we get also φ �∈ Cn(Γi+1(σ)), i.e., Γi(σ, φ) ∪
{αn−i} �|= φ. Hence Γi+1(σ, φ) = Γi(σ, φ) ∪ {αn−i} = Γi+1(σ) as required.
Case (ii): Γi(σ) ∪ {αn−i} |= ⊥.
Then Γi+1(σ) = Γi(σ). Also, we get Γi(σ) ∪ {αn−i} |= φ. By the inductive
hypothesis Γi(σ, φ) = Γi(σ), this is equivalent to Γi(σ, φ) ∪ {αn−i} |= φ.
Hence Γi+1(σ, φ) = Γi(σ, φ) = Γi(σ). Thus Γi+1(σ, φ) = Γi+1(σ) as required.
Hence we have shown Γi(σ, φ) = Γi(σ) for all i = 0, 1, . . . , n. In particular
this means Γn(σ, φ) = Γn(σ) and so K �σ φ = K.
(L4) If |= φ1 ↔ φ2 then K �σ φ1 = K �σ φ2 Suppose |= φ1 ↔ φ2. Then
either both |= φ1 and |= φ2 or both �|= φ1 and �|= φ2. In the former case
we get K �σ φ1 = K = K �σ φ2 as required, while in the latter case
we get K �σ φ1 = Cn(Γn(σ, φ1)) and K �σ φ2 = Cn(Γn(σ, φ2)). By an
easy induction on i Γi(σ, φ1) = Γi(σ, φ2) for all i = 0, 1, . . . , n. In particular
Γn(σ, φ1) = Γn(σ, φ2).
(Failure) K �σ � = K Holds trivially.

We can also show that σ-liberation does satisfy a certain weaker form of
(Inclusion), but for this we will wait until Sect. 4, after we have provided an
axiomatic characterisation of σ-liberation.

3.2. Linear liberation

We now present a different way of using a sequence of sentences to define a
retraction operator. These sequences are different from the σ used before,
and will be employed in a simpler fashion. Intuitively, the agent has in mind
several different candidate belief sets. We assume that the agent can order
these candidate belief sets linearly according to preference, with the agent’s
actual current belief set identified with the most preferred belief set in this
ordering. Since we work in a finite propositional language, every belief set
can be identified with a single sentence. Therefore, we represent the agent’s
epistemic state as a sequence ρ = (β1, . . . , βm) of sentences, where each βi

stands for the belief set Cn(βi). Cn(β1) is the most preferred belief set,
Cn(β2) is the next most preferred belief set, and so on3.

Definition 3.6. Let K be a belief set and ρ = (β1, . . . , βm) a finite sequence
of sentences. Then ρ is a K-sequence iff we have K = Cn(β1).

3Since ρ is a sequence this means that the same sentence may appear more than once
in ρ. However, for the results in this paper, this feature can be ignored if desired.
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We used the natural numbers to index the sentences in the sequence ρ,
but we could take them to be indexed by any totally ordered set. (This
observation will turn out to be useful in the proof of Prop. 3.16.)

Now to remove a sentence φ from K using a K-sequence ρ we just take
our new belief set to be the one generated by the most preferred sentence
– according to ρ – which does not imply φ. If no such sentence exists,
equivalently, if

∨
k βk |= φ, then we just take our new belief set to be K

if φ is a tautology, and Cn(∅) otherwise. More precisely, from a given K-
sequence ρ we define the operator �ρ for K by

K �ρ φ =




Cn(βi) where i = min{k | βk �|= φ} if
∨

k βk �|= φ
K if |= φ
Cn(∅) otherwise

Definition 3.7. Let K be a belief set and � be an operator for K. Then �
is a linear liberation operator (for K) iff � = �ρ for some K-sequence ρ.

K-sequences essentially correspond to the ‘linear’ variety of the type of
general epistemic state considered by Alexander Bochman [2]. (Unlike us,
Bochman also considers infinite languages.)

It turns out that linear liberation operators do not satisfy (Inclusion)
either. For a simple counterexample let K = Cn(p) and consider the K-
sequence ρ = (p,¬p). Then K �ρ p = Cn(¬p), so ¬p has entered the belief
set. The next proposition gives us some properties of linear liberation.

Proposition 3.8. Every linear liberation operator for K is a retraction
operator for K which satisfies

If θ �∈ K � (θ ∧ φ) then K � θ = K � (θ ∧ φ) (Hyperregularity)

Proof. Let � be a linear liberation operator. By definition this means that
�=�ρ for some K-sequence ρ = (β1, . . . , βm). To show �ρ is a retraction
operator we check each of (L1)–(L4) and (Failure) in turn.
(L1) K �ρ φ = Cn(K �ρ φ) By the definition of K �ρ φ either K �ρ φ =
K, in which case the rule holds since K is a belief set, or K �ρ φ takes the
form Cn(Γ) for some Γ ⊆ L, in which case the rule holds by the idempotence
of Cn.
(L2) If �|= φ then φ �∈ K �ρ φ This is obvious.
(L3) If φ �∈ K then K �ρ φ = K Suppose φ �∈ K. Then, since K = Cn(β1)
by definition of a K-sequence, we have φ �∈ Cn(β1). Hence

∨
k βk �|= φ and

so K �ρ φ = Cn(βi), where i = min{k | βk �|= φ}. But clearly i = 1, so
K �ρ φ = Cn(β1) = K as required.
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(L4) If |= φ1 ↔ φ2 then K �ρ φ1 = K �ρ φ2 If |= φ1 ↔ φ2 then we have
Γ |= φ1 iff Γ |= φ2 for any set Γ ⊆ L. Hence, in the definition of K �ρ φ1

we can clearly replace φ1 everywhere by φ2, which means that K �ρ φ1 =
K �ρ φ2 as required.
(Failure) K �ρ � = K Again holds trivially.
Hence we have shown �ρ is a retraction operator. It remains to show �ρ

satisfies (Hyperregularity). So suppose θ �∈ K �ρ (θ ∧ φ). Then we must
have �|= θ and so also �|= (θ∧φ). For the case

∨
k βk |= θ∧φ we must then have

K �ρ θ = Cn(∅) = K �ρ (θ ∧ φ) as required. So suppose
∨

k βk �|= θ ∧ φ.
Then let j = min{k | βk �|= θ ∧ φ}. We have K �ρ (θ ∧ φ) = Cn(βj).
Furthermore, since θ �∈ K �ρ (θ ∧ φ), we know βj �|= θ. We claim also
j = min{k | βk �|= θ}. This holds since if j′ < j and βj′ �|= θ then obviously
βj′ �|= θ ∧ φ, but this contradicts j = min{k | βk �|= θ ∧ φ}. Hence j =
min{k | βk �|= θ} as claimed, and so K �ρ θ = Cn(βj) = K �ρ (θ ∧ φ) again
as required.

(Hyperregularity) comes from [10]. When added to the basic retraction
postulates this rule allows us to derive some extra properties:

Proposition 3.9. Let � be a retraction operator which satisfies (Hyperreg-
ularity). Then � also satisfies the following two properties:

• Either K � (θ ∧ φ) = K � θ or K � (θ ∧ φ) = K � φ

• If θ �∈ K � φ and φ �∈ K � θ then K � θ = K � φ

Proof. For the first property, suppose first that |= θ ∧ φ. Then, by (L4)
and (Failure), K � (θ ∧ φ), K � θ and K � φ are all equal to K and so
the property holds in this case. So assume instead �|= θ ∧ φ. Now it cannot
be the case that both θ and φ belong to K � (θ ∧ φ), since if so then we
would have θ ∧ φ ∈ K � (θ ∧ φ) by (L1), and this contradicts (L2). Hence
either θ �∈ K � (θ ∧ φ) or φ �∈ K � (θ ∧ φ). Applying (Hyperregularity) in
the former case gives K � (θ ∧ φ) = K � θ, while applying it in the latter
case gives K � (θ ∧φ) = K � φ.4 Thus the property holds also in this case.

For the second property, suppose θ �∈ K � φ and φ �∈ K � θ. From the
first property just proved above, we know either K � (θ ∧ φ) = K � θ or
K � (θ ∧ φ) = K � φ. Suppose the former holds. Then, from φ �∈ K � θ
we get φ �∈ K � (θ ∧ φ). Then, applying (Hyperregularity), we obtain
K � φ = K � (θ ∧ φ) = K � θ as required. By a symmetric argument

4In our proofs we will not always mention explicitly the more obvious uses of (L4) such
as K � (θ ∧ φ) = K � (φ ∧ θ) or K � φ = K � ¬¬φ.
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we can show that the desired conclusion also obtains if we assume instead
K � (θ ∧ φ) = K � φ.

The first property above is the postulate known as (Decomposition) [1].
The second property gives a condition for when removing two different sen-
tences yields the same result.

Prop. 3.8 gives us a sound list of postulates for linear liberation. We
would now like to show that this list is complete, i.e., that every retraction
operator � for K which satisfies (Hyperregularity) is of the form �ρ for some
K-sequence ρ. To do this we will describe how to construct, from a given
such �, a special K-sequence ρ(�). This construction will also be used in
the next subsection when we come to characterising certain subclasses of the
linear liberation operators. We define ρ(�) = (β1, . . . , βm) from K and �
inductively as follows:

(i) β1 is chosen such that Cn(β1) = K.
(ii) For i > 0, given we have defined β1, . . . , βi, we choose βi+1 such that

Cn(βi+1) = K � (
∨i

j=1 βj) (such a βi+1 exists since K � (
∨i

j=1 βj) is
deductively closed by (L1)).

(iii) m is minimal such that |= ∨m
j=1 βj .

Notes: In step (ii) the precise choice of the βj makes no difference by (L4).
Also, for each i < m, we have �|= ∨i

j=1 βj by the minimality of m in step (iii).
Hence, by (L2) we have

∨i
j=1 βj �∈ K � (

∨i
j=1 βj) and so βi+1 �|= ∨i

j=1 βj.
Thus

∨i+1
j=1 βj �|=

∨i
j=1 βj and so the existence of m in step (iii) is guaranteed.

Also note that if we follow the convention that an empty disjunction is
logically equivalent to ⊥ then we may write Cn(β1) = K = K � ⊥5 =
K � (

∨
j<1 βj). Hence, for all i = 1, . . . ,m, Cn(βi) =K � (

∨
j<i βj). By step

(i) the sequence ρ(�) is clearly a K-sequence. We then have the following:

Proposition 3.10. Let � be a retraction operator for K which satisfies
(Hyperregularity). Then �=�ρ(�).

Proof. Let ρ(�) = (β1, . . . , βm). We need to show that, for all φ ∈ L,
K �ρ(�) φ = K � φ. Firstly, if |= φ then K �ρ(�) φ = K by definition
of �ρ(�), while K � φ = K � � = K using (L4) and (Failure). Hence in
this case we get the required conclusion. Now suppose �|= φ. Then, since
|= ∨

j≤m βj , this means also
∨

j≤m βj �|= φ. Hence in this case K �ρ(�) φ
= Cn(βi), where i is minimal such that βi �|= φ. Then, since Cn(βi) =

5This follows from (Vacuity) and our assumption that K is consistent.
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K � (
∨

j<i βj), i is minimal such that φ �∈ K � (
∨

j<i βj). By the minimality
of i, βj |= φ for all j < i, so |= (φ ∧ ∨

j<i βj) ↔ (
∨

j<i βj) and so, by
(L4), φ �∈ K � (φ ∧ ∨

j<i βj). Applying (Hyperregularity) to this gives us
K � φ = K � (φ ∧ ∨

j<i βj), and so, re-applying (L4) to the right-hand
side, K � φ = K � (

∨
j<i βj) = Cn(βi) = K �ρ(�) φ as required.

Propositions 3.8 and 3.10 together give us the following characterisation
for linear liberation operators (cf. Representation Theorem 5 in [2]).

Theorem 3.11. For a given belief set K, � is a linear liberation operator
iff � is a retraction operator which satisfies (Hyperregularity).

3.3. Special cases of linear liberation

Note that, in the definition of a K-sequence, there need not be any relation-
ship between the sentences βi. Other, more restricted classes of liberation
operators can now be found by placing restrictions on the βi. We consider
four here. First it is natural to ask: when does a linear liberation operator
�ρ satisfy (Inclusion)? It is quite easy to see that this will happen if and
only if each sentence in ρ is a logical consequence of β1, i.e.,

(A) For each i = 1, . . . ,m, β1 |= βi

Proposition 3.12. Let � be a linear liberation operator for K. Then �
satisfies (Inclusion) iff � = �ρ for some K-sequence ρ satisfying (A).

Proof. To show the ‘if’ direction, first note that (Inclusion) always holds
if

∨
k βk |= φ (since in this case K �ρ φ is equal to either K or Cn(∅)), while

if
∨

k βk �|= φ we have K �ρ φ = Cn(βi) for some i. Then, since β1 |= βi by
(A), we have Cn(βi) ⊆ Cn(β1) and so K �ρ φ ⊆ Cn(β1) = K.

For the ‘only if’ direction suppose � satisfies (Inclusion). By Prop. 3.10
�=�ρ(�) where ρ(�) is the K-sequence constructed earlier. We will simply
show that if � satisfies (Inclusion) then ρ(�) satisfies (A). But, for each
i = 1, . . . ,m, the construction gave us Cn(βi) = K � (

∨
j<i βj). Hence,

using (Inclusion), we deduce Cn(βi) ⊆ K = Cn(β1). Hence β1 |= βi as
required.

Next consider the following, stronger, condition on a K-sequence ρ =
(β1, . . . , βm):

(B) For i < j we have βi |= βj



Belief Liberation (and Retraction) 57

(B) – which says that sentences get progressively logically weaker through ρ
– leads to an important class of withdrawal operators – the class of severe
withdrawal operators which, as is shown in [17], may be characterised by the
basic retraction postulates plus (Inclusion) and the following two rules:6

• If �|= θ then K � θ ⊆ K � (θ ∧ φ) (Antitony)
• If θ �∈ K � (θ ∧ φ) then K � (θ ∧ φ) ⊆ K � θ (Conjunctive Inclusion)

Note that the second rule above corresponds to ‘one half’ of (Hyperregular-
ity) and is an AGM supplementary postulate for contraction [1]. The first
rule above is a strengthened version of the other supplementary postulate
“(K � θ) ∩ (K � φ) ⊆ K � (θ ∧ φ)”.

Proposition 3.13. Let K be a belief set and � an operator for K. Then
�=�ρ for some K-sequence ρ which satisfies (B) iff � is a severe withdrawal
operator.

Proof. For the ‘only if’ direction let ρ be a K-sequence which satisfies (B).
By Prop. 3.8 we know already that �ρ is a retraction operator which satisfies
(Hyperregularity). Since (Hyperregularity) implies (Conjunctive Inclusion)
we know that the latter property is satisfied. Since (B) implies (A) we know
(Inclusion) is satisfied by Prop. 3.12. It remains to show that (Antitony)
is satisfied. So suppose �|= θ. If

∨
k βk |= θ then K �ρ θ = Cn(∅) so we

get K �ρ θ ⊆ K �ρ (θ ∧ φ) as required. So suppose
∨

k βk �|= θ (so also∨
k βk �|= θ ∧ φ). Let j1 = min{k | βk �|= θ} and j2 = min{k | βk �|= θ ∧ φ}.

Since βj1 �|= θ we also know βj1 �|= θ ∧ φ and so, by the minimality of j2, we
must have j2 ≤ j1. Hence (B) tells us βj2 |= βj1 and so K �ρ θ = Cn(βj1) ⊆
Cn(βj2) = K �ρ (θ∧φ), again as required. Hence �ρ is a severe withdrawal
operator.

For the ‘if’ direction let � be a severe withdrawal operator. Since (An-
titony) and (Conjunctive Inclusion) jointly imply (Hyperregularity), � is also
a retraction liberation operator which satisfies (Hyperregularity). Hence, by
Prop. 3.10, �=�ρ(�). We will show that the fact that � satisfies (Inclu-
sion) and (Antitony) is enough to ensure that ρ(�) satisfies (B). So let
i < j. We must show βi |= βj . If i = 1 then, since � satisfies (In-
clusion), we know β1 |= βj from the proof of Prop. 3.12. So suppose
1 < i < j. Then, from the construction of ρ(�), Cn(βj) = K �

∨
k<j βk and

Cn(βi) = K �
∨

k<i βk. Since i < j, |= (
∨

k<i βk) ↔ (
∨

k<i βk ∧ ∨
k<j βk)

and hence, by (L4), Cn(βi) = K � (
∨

k<i βk ∧ ∨
k<j βk). Using (Antitony)

then gives us Cn(βj) ⊆ Cn(βi) and so βi |= βj as required.

6Such sequences are also studied in [6] from the perspective of qualitative utility in
economics.
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An example of a condition that doesn’t lead to the satisfaction of (In-
clusion) is the following:

(C) |= ∨
k βk and, for i �= j, βi ∧ βj is inconsistent

(C) says that the sentences in ρ represent mutually incompatible points of
view. Moreover, the different points of view have nothing but tautologies in
common (since |= ∨

k βk, or equivalently,
⋂

k Cn(βk) = Cn(∅)).
Proposition 3.14. Let K be a belief set and � an operator for K. Then
� = �ρ for some K-sequence ρ which satisfies (C) iff � is a linear liberation
operator that satisfies

If (K � θ) ∪ (K � φ) is consistent then K � θ = K � φ (Dichotomy)

Proof. For the ‘only if’ direction let ρ be a K-sequence which satisfies (C).
First note that |= ∨

k βk implies for all ψ ∈ L, either K �ρ ψ = Cn(βi)
where i is minimal such that βi �|= ψ, or (if |= ψ) K �ρ ψ = K. Since
K = Cn(β1), K �ρ ψ always takes the form Cn(βi) for some i = 1, . . . ,m.
So let i, j be such thatK �ρ θ = Cn(βi) andK �ρ φ = Cn(βj). If i = j then
K �ρ θ = K �ρ φ and so (Dichotomy) holds. If i �= j then, by (C), βi∧βj is
inconsistent and so Cn(βi)∪Cn(βj) is inconsistent, i.e., (K �ρ θ)∪(K �ρ φ)
is inconsistent. Thus also in this case (Dichotomy) holds.

For the ‘if’ direction, let � be a linear liberation operator which satisfies
(Dichotomy). We will show that the fact that � satisfies (Dichotomy) is
enough to ensure that the K-sequence ρ(�) = (β1, . . . , βm) satisfies (C).
Since |= ∨

k βk, it remains to show that, for i �= j, βi ∧ βj is inconsistent.
For each i = 1, . . . ,m Cn(βi) = K �

∨
k<i βk. Suppose i �= j. Assume,

without loss of generality, that i < j. Then Cn(βi) = K �
∨

k<i βk and
Cn(βj) = K �

∨
k<j βk. Since i < j,

∨
k<j βk ∈ Cn(βi), i.e.,

∨
k<j βk ∈

K �
∨

k<i βk. Since
∨

k<j βk �∈ K �
∨

k<j βk, K �
∨

k<i βk �= K �
∨

k<j βk.
Hence, by (Dichotomy), (K �

∨
k<i βk)∪ (K �

∨
k<j βk) is inconsistent, i.e.,

Cn(βi) ∪Cn(βj) is inconsistent. Since Cn(Cn(βi) ∪Cn(βj)) = Cn(βi ∧ βj)
this is equivalent to saying βi ∧ βj is inconsistent as required.

A justification for (Dichotomy) is provided by the condition on the se-
quence ρ. An agent has a sequence of mutually incompatible belief sets. Its
way of dealing with changes will necessarily have to be dichotomous. When
is such a mode of reasoning sensible? When the agent has become quite so-
phisticated through a process of refinement and ironing out differences in its
belief corpus. The theories in ρ, then, are most plausibly viewed as the end
products of a period of making small changes and converging on a cluster of
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(incompatible) alternatives. Therefore, we refer to this type of liberation as
dichotomous liberation. (Dichotomy) can also be seen as describing belief
change that lies between contraction and revision – a view confirmed by the
discussion in Sect. 5.1.

Finally we have the following condition:

(D) For i < j either βi |= βj or βi ∧ βj |= ∨
k<i βk

Each of (B) and (C) implies (D), a condition which leads us to the following
subclass of linear liberation:

Proposition 3.15. Let K be a belief set and � an operator for K. Then
� = �ρ for some K-sequence ρ which satisfies (D) iff � is a linear liberation
operator that satisfies

If (K � θ) ∪ (K � φ) �|= φ then K � θ ⊆ K � φ
(Strong Conservativity)

Proof. For the ‘only if’ direction let ρ = (β1, . . . , βm) be a K-sequence
which satisfies (D) and suppose (K �ρ θ) ∪ (K �ρ φ) �|= φ. Then clearly
�|= φ. We now consider two cases:
Case (i):

∨
k βk |= φ In this case K �ρ φ = Cn(∅) and so (K �ρ θ)∪

(K �ρ φ) = (K �ρ θ) ∪ Cn(∅) = K �ρ θ. Hence the assumption that
(K �ρ θ) ∪(K �ρ φ) �|= φ reduces to K �ρ θ �|= φ. We now claim
K �ρ θ = Cn(∅). To see this, note that if either

∨
k βk �|= θ or |= θ then

K �ρ θ = Cn(βi) for some i (remembering that K = Cn(β1) for the case
|= θ) and so, from K �ρ θ �|= φ, we get φ �∈ Cn(βi) which contradicts our
assumption that

∨
k βk |= φ. Hence both

∨
k βk |= θ and �|= θ. By defini-

tion of �ρ, then, we have K �ρ θ = Cn(∅) as claimed. Hence we obtain
K �ρ θ = K �ρ φ.
Case (ii):

∨
k βk �|= φ In this case K �ρ φ = Cn(βi) where i is minimal such

that βi �|= φ. Now if both �|= θ and
∨

k βk |= θ then K �ρ θ = Cn(∅) ⊆
K �ρ φ and so we get the required conclusion. So suppose either |= θ or∨

k βk �|= θ. Then K �ρ θ = Cn(βj) for some j. Now if this j were such that
j < i then, by minimality of i, we would have βj |= φ and so φ ∈ K �ρ θ.
But this implies (K �ρ θ)∪ (K �ρ φ) |= φ, contradicting our initial assump-
tion. Hence i ≤ j. In case i = j we get K �ρ θ = K �ρ φ which gives the
required conclusion. Suppose now that i < j. Then, by (D), either βi |= βj

or βi∧βj |=
∨

k<i βk. But if the latter were true we would deduce βi∧βj |= φ
(since

∨
k<i βk |= φ using the minimality of i) and so Cn(βi) ∪ Cn(βj) |= φ,

i.e., (K �ρ θ)∪(K �ρ φ) |= φ. This again contradicts the initial assumption.
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Hence βi |= βj , and so, since this is equivalent to Cn(βj) ⊆ Cn(βi), we again
get our required conclusion.

For the ‘if’ direction let � be a linear liberation operator satisfying
(Strong Conservativity). We show that ρ(�) = (β1, . . . , βm) satisfies (D).
Let i < j. Then Cn(βi) = K �

∨
k<i βk and Cn(βj) = K �

∨
k<j βk. By

(Strong Conservativity) we know either (K �
∨

k<j βk) ∪ (K �
∨

k<i βk) |=∨
k<i βk or K �

∨
k<j βk ⊆ K �

∨
k<i βk. If the former holds then we get

Cn(βj)∪Cn(βi) |=
∨

k<i βk which gives βi ∧βj |=
∨

k<i βk and so (D) holds.
If the latter holds then we get Cn(βj) ⊆ Cn(βi) which gives βi |= βj and so
again (D) holds.

The postulate (Strong Conservativity) has been shown to be a charac-
teristic postulate for base-generated maxichoice contraction operators [10].
The significance of this particular subclass of linear liberation operators is
that it is equivalent to none other than the class of σ-liberation operators
from Sect. 3.1:

Theorem 3.16. Let K be a belief set. Then for each belief sequence σ
relative to K there exists a K-sequence ρ satisfying (D) such that �σ = �ρ.
Conversely for each K-sequence ρ satisfying (D) there exists a belief sequence
σ relative to K such that �ρ = �σ.

Proof. From σ to ρ. Let σ = (α1, . . . , αn) be a given belief sequence rela-
tive to K. We will construct from σ a suitable K-sequence ρ. First recall
that the sentences in ρ may be indexed by any totally ordered set. We take
a special set of indices, namely the set Con([[σ]]) of all consistent subsets of
the set [[σ]] of all sentences appearing in σ. Furthermore, we take this set to
be ordered by the relation ≺ defined by setting, for all X,Y ∈ Con([[σ]]),

X ≺ Y iff there is some i such that αi ∈ X \ Y and,
for all j > i, αj ∈ X iff αj ∈ Y

≺ forms a strict total order on Con([[σ]]) and satisfies the following property,
for all X,Y ∈ Con([[σ]]):

If X ⊃ Y then X ≺ Y. (i)

Given this index set Con([[σ]]) we then specify a sequence ρ = (βX )X∈Con([[σ]])

by setting, for each X ∈ Con([[σ]]), βX =
∧
X. (The precise ordering in

which the sentences in X appear in this conjunction does not matter.) Note
that since ∅ ∈ Con([[σ]]) and |= β∅ (following the convention that an empty
conjunction is logically equivalent to �), we have |= ∨

X∈Con([[σ]]) βX . We



Belief Liberation (and Retraction) 61

now need to show three things: (a) The sequence ρ satisfies (D), (b) ρ is a
K-sequence, i.e., K = Cn(βX0), where X0 is minimal under ≺ in Con([[σ]]),
and (c) K �ρ φ = K �σ φ for all φ ∈ L.

To show ρ satisfies (D), we need to show that, for all X,Y ∈ Con([[σ]]),

If X ≺ Y then either βX |= βY or βX ∧ βY |=
∨

{Z∈Con([[σ]])|Z≺X}
βZ .

So suppose X,Y ∈ Con([[σ]]) and X ≺ Y . Firstly, if Y ⊆ X then
∧
X |=∧

Y , i.e., βX |= βY as required. So assume instead Y �⊆ X. Now if X ∪ Y
is inconsistent then so is

∧
X ∧ ∧

Y = βX ∧ βY . Hence in this case we
get βX ∧ βY |= ∨

{Z∈Con([[σ]])|Z≺X} βZ as required. Now suppose X ∪ Y is
consistent. Then, since Y �⊆ X, we have X ⊂ X ∪ Y and so, by (i) above,
we know X ∪ Y ≺ X. Clearly |= (βX ∧ βY ) ↔ βX∪Y . Hence in this case
(putting Z ′ = X ∪Y ) |= (βX ∧βY ) ↔ βZ′ for some Z ′ ∈ Con([[σ]]) such that
Z ′ ≺ X, which suffices to show βX ∧ βY |= ∨

{Z∈Con([[σ]])|Z≺X} βZ .
Thus (a) holds. To show (b) and (c), we require the following:

Lemma 3.17. Let φ ∈ L be such that �|= φ. Then Γn(σ, φ) = X, where X is
minimal under ≺ in Con([[σ]]) such that X �|= φ.

Proof. Since Γn(σ, φ) �|= φ, it remains to show that Y ≺ Γn(σ, φ) implies
Y |= φ for all Y ∈ Con([[σ]]). But if Y ≺ Γn(σ, φ) then there exists i such
that αi ∈ Y \ Γn(σ, φ) and, for all j > i αj ∈ Y iff αj ∈ Γn(σ, φ). By
construction of Γn(σ, φ), since αi �∈ Γn(σ, φ), Γn−i(σ, φ) ∪ {αi} |= φ. Since
Y contains αi along with all elements of Γn(σ, φ) of the form αj for j > i,
Γn−i(σ, φ) ∪ {αi} ⊆ Y and so Y |= φ as required.

Given this lemma we can now confirm that ρ is a K-sequence. Let X0 be
the minimal element under ≺ in Con([[σ]]). Since obviously X0 �|= ⊥, X0 is
also minimal under ≺ in Con([[σ]]) such that X0 �|= ⊥. Applying Lemma 3.17
then gives us X0 = Γn(σ,⊥) = Γn(σ). Hence Cn(X0) = Cn(Γn(σ)) = K as
required. Thus (b) holds. It only remains to show (c) K �ρ φ = K �σ φ
for all φ ∈ L. If |= φ then K �ρ φ = K = K �σ φ. If �|= φ then, since
|= ∨

X βX ,
∨

X βX �|= φ. Thus K �ρ φ = Cn(βX), where X is minimal in
Con([[σ]]) under ≺ such that βX �|= φ, equivalently X �|= φ. But by Lemma
3.17 X = Γn(σ, φ). Hence K �ρ φ = Cn(Γn(σ, φ)) = K �σ φ as required.

From ρ to σ. Let ρ = (β1, . . . , βm) be a given K-sequence which satisfies
(D). Then we define the belief sequence σ from ρ by simply reversing the
sequence, i.e., we set σ = (βm, . . . , β1).
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Lemma 3.18. Let φ ∈ L be such that
∨

k βk �|= φ. Then Cn(Γm(σ, φ)) =
Cn(βi), where i = min{k | βk �|= φ}.
Proof. Let i = min{k | βk �|= φ}. Following the construction of Γm(σ, φ)
we see that Γk(σ, φ) = ∅ for all k < i and Γi(σ, φ) = {βi}. Since ρ satisfies
(D), for all j > i either βi |= βj or βi ∧ βj |= ∨

k<i βk. By the minimality
of i,

∨
k<i βk |= φ, hence this latter implies {βi} ∪ {βj} |= φ. Thus in the

construction of Γm(σ, φ) from stage i, the only sentences added are those
logically implied by βi. Thus Cn(Γm(σ, φ)) = Cn(βi) as required.

From this result we can see that σ is a belief sequence relative to K, for
Cn(Γm(σ)) = Cn(Γm(σ,⊥)) = Cn(βi), where i is minimal such that βi is
consistent. Since K = Cn(β1) is consistent, i = 1 and so Cn(Γm(σ)) = K.
It remains to show K �σ φ = K �ρ φ for all φ ∈ L. If |= φ then K �σ φ =
K = K �ρ φ. If �|= φ but

∨
k βk |= φ then K �ρ φ = Cn(∅) while, since

Γm(σ, φ) = ∅, also K �σ φ = Cn(Γm(σ, φ)) = Cn(∅) as required. Finally if∨
k βk �|= φ then the conclusion follows directly from Lemma 3.18.

Given Theorem 3.16 we may state:

Corollary 3.19. Let K be a belief set and let � be an operator for K.
Then � is a σ-liberation operator iff � is a linear liberation operator that
satisfies (Strong Conservativity).

So σ-liberation may be axiomatically characterised by the basic retrac-
tion postulates plus (Hyperregularity) and (Strong Conservativity). Further-
more the results of this section allow us to say more: Every severe withdrawal
operator is also a σ-liberation operator (as is every dichotomous liberation
operator). Secondly, since severe withdrawal doesn’t satisfy (Recovery), σ-
liberation doesn’t satisfy (Recovery) either.

4. Weaker versions of (Inclusion)

While we reject (Inclusion), we intend to do justice to the Principle of Mini-
mal Change. Thus it behooves us to look for weaker versions which disallow
gratuitous addition of new beliefs. In this section we consider some potential
weakenings. At the end of this section we will check whether our proposed
liberation operators satisfy these weakenings. Throughout this section, un-
less stated otherwise, � is assumed to be a retraction operator for K. The
first weakening is the following:

(w1) If θ ∈ K � φ and θ �∈ K then ¬θ ∈ K
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This rule states that a new sentence θ may be introduced into a belief set
during a removal operation only if its negation was present before the re-
moval (and, since K � φ is always consistent,7 has necessarily been given
up during the removal). This formalises the intuition that a new sentence is
introduced only if there was previously something present in the belief set
which had kept it out but which is now no longer there.

Though (w1) looks reasonable at first glance, the following indicates it
is too strong for our purposes.

Proposition 4.1. If (Closure) holds then (w1) is equivalent to:

(w1′) If K is not complete then K � φ ⊆ K

Proof. To show (w1) implies (w1′) suppose K is not complete8. Then
there exists some λ ∈ L such that λ �∈ K and ¬λ �∈ K. If there existed θ ∈
(K � φ)\K then θ �∈ K would give us either θ∨λ �∈ K or θ∨¬λ �∈ K (since
K is deductively closed). Suppose the former. Then, since θ ∨ λ ∈ K � φ
(which follows from θ ∈ K � φ and (Closure)), we apply (w1) to obtain
¬(θ∨λ) ∈ K and so ¬λ ∈ K. In a similar way if we suppose θ∨¬λ ∈ K � φ
then we obtain λ ∈ K. Either way we get a contradiction and so there is no
θ ∈ (K � φ) \K, i.e., K � φ ⊆ K as required. To show (w1′) implies (w1)
suppose θ ∈ (K � φ) \K. Then K � φ �⊆ K and so, applying (w1′), K is
complete. Hence, from θ �∈ K we get ¬θ ∈ K as required.

The rule (w1′) says that (Inclusion) holds whenever the prior belief setK
is not complete. Since the prior belief set K typically will not be complete,
(w1′) isn’t much of a weakening of (Inclusion) and we should not be too
disappointed when a suggested operation of retraction does not satisfy it (or
the equivalent (w1)). A relaxed version of (w1) is:

(w2) If θ ∈ (K � φ) \K then there exists ψ ∈ K � φ such that
ψ |= θ and ¬ψ ∈ K.

That is, every θ ∈ (K � φ) \K can be ‘traced back’ to, i.e., is a logical con-
sequence of, a sentence whose negation was in K but which is now included
in K � θ. Equivalently:

Proposition 4.2. If (Closure) holds then (w2) is equivalent to:

(w2′) If (K � φ) ∪K is consistent then K � φ ⊆ K

7This is already ensured by the (Success) postulate.
8A belief set K is complete iff for all λ ∈ L either λ ∈ K or ¬λ ∈ K.
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Proof. To show (w2) implies (w2′) suppose K � φ �⊆ K. Then there
exists θ ∈ (K � φ) \K and so, by (w2), there exists ψ ∈ K � φ such that
¬ψ ∈ K. Hence (K � φ) ∪ K is inconsistent as required. To show (w2′)
implies (w2) suppose there exists θ ∈ (K � φ) \K. Then K � φ �⊆ K and
so, applying (w2′), (K � φ) ∪K is inconsistent. So, there is a sentence λ
such that ¬λ ∈ K and λ ∈ K � φ.9 Then consider the sentence λ ∧ θ. We
have λ ∧ θ |= θ, ¬(λ ∧ θ) ∈ K (since ¬λ ∈ K and K is deductively closed)
and λ ∧ θ ∈ K � φ (since λ, θ ∈ K � φ and K � φ is deductively closed by
(Closure)). This suffices to prove (w2) holds.

(w2′) says: the new belief set is either included in the old one, or the
agent now believes the negation of a sentence it previously held to be true.
That is, if the agent does not weaken its belief set, it has made a complete
about-turn regarding some beliefs.

Our last weakening of (Inclusion) is a property often held to be charac-
teristic of withdrawal operators. When one removes a sentence θ from K
using an operation � of withdrawal, one does so without insisting that its
negation ¬θ be in the new belief set. There is just one possible situation
when ¬θ ∈ K � θ, and that is if ¬θ ∈ K (in which case – assuming as we
do that K is consistent – θ �∈ K and so K � θ = K by (Vacuity)). That is,
the following rule is taken to hold:

(w3) If ¬θ �∈ K then ¬θ �∈ K � θ

How do σ-liberation and linear liberation fare with respect to the above
weak (Inclusion) rules? Example 3.4 shows that σ-liberation (and hence also
linear liberation) does not satisfy the weaker version (w3) since we have
¬p �∈ K but ¬p ∈ K �σ p. Hence σ-liberation can result in the addition
of the negation of the sentence being removed. This example also shows
that σ-liberation doesn’t satisfy (w1) (or, therefore, (w1′)), since we have
(¬p∧¬q)∨ r ∈ (K �σ p)\K but ¬((¬p∧¬q)∨ r) �∈ K for any propositional
variable r distinct from p, q. However, note that the weak inclusion postulate
(w2′) is just a special instance of (Strong Conservativity) (remembering that
K � ⊥ = K for any retraction operator for K). Hence we can see that σ-
liberation operators do satisfy (w2′) (and the equivalent (w2)). However,
linear liberation operators do not satisfy this property in general, as can be
seen by taking K = Cn(p) with the K-sequence ρ = (p, q). Then, since
K �ρ p = Cn(q) we have (K �ρ p) ∪K is consistent but K �ρ p �⊆ K.

9E.g. let ¬λ be the sentence characterised by M(K). λ defined as such always exists,
since we assume a finitely generated language.



Belief Liberation (and Retraction) 65

5. From retraction to withdrawal and revision

In this section we consider the relationship between retraction operators
and the traditional belief change operators of withdrawal and revision. In
particular we show how retraction operators can be ‘converted’ into either
withdrawal or revision operators.

5.1. Retraction to withdrawal

What distinguishes retraction operators from withdrawal operators is that
removing beliefs using the former may lead to the introduction of new beliefs
into the belief set, while using the latter always leads to a new belief set which
is a subset of the prior belief set. However, there is a simple way in which
a given retraction operator may be transformed into a withdrawal operator.
After retraction is performed, we simply discard all sentences which were
not originally elements of K, i.e., from each retraction operator � for K we
can define the new operator � for K by setting for each φ ∈ L,

K � φ = K ∩ (K � φ).

Obviously � is guaranteed to satisfy (Inclusion). This is strongly reminiscent
of the Harper Identity [8]:

(Harper Identity) K � φ = K ∩ (K ∗ ¬φ)

where ∗ is a given revision operator. A formal difference is the appearance
of ‘φ’ rather than ‘¬φ’ on the right-hand side. A more crucial difference is
that while the Harper Identity is usually employed as a means of obtaining
a withdrawal operation from a given revision operator, here we use a slight
variant of it to obtain a withdrawal operator from a retraction operator.
Continuing with our liberation metaphor, we make the following definition:

Definition 5.1. Let K be a belief set and let � be an operator for K.
If the operator � for K is defined from � as above then we call � the
incarceration10 of �.

As well as (Inclusion), the incarceration of a retraction operator satisfies
(Closure), (Success), (Vacuity) and (Extensionality), and thus:

Proposition 5.2. The incarceration of a retraction operator is a withdrawal
operator.

10We are grateful to David Makinson for suggesting this terminology.
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Proof. Let � be a given retraction operator and � its incarceration. To
show (Closure) holds, we know K � φ is deductively closed by (Closure) for
�, as isK. Since the intersection of two deductively closed sets is deductively
closed, we get K � φ = Cn(K � φ). (Vacuity) follows from the fact that
� satisfies (Weak Vacuity 2) (see the end of this section). The other two
postulates are proved easily using the fact that � already satisfies the same
postulate.

What about our subclasses of liberation operators? What happens, for
instance, when we take the incarceration of a linear liberation operator?
Suppose � is a linear liberation operator. Then by definition � = �ρ for
some K-sequence ρ. Now modify ρ to get a new sequence f(ρ) as follows.
Given ρ = (β1, . . . , βm) we just replace each βi by βi ∨ β1 (for i > 1), i.e.,
we define

f(ρ) = (β1, (β2 ∨ β1), (β3 ∨ β1), . . . , (βn ∨ β1))

Since β1 is unchanged, f(ρ) is again a K-sequence. Furthermore,

Proposition 5.3. Let ρ be a K-sequence and � be the incarceration of �ρ.
Then � = �f(ρ).

Proof. Let ρ = (β1, . . . , βm) be a given K-sequence. We must show that
for all φ ∈ L we have K ∩ (K �ρ φ) = K �f(ρ) φ. Firstly if |= φ then
K ∩ (K �ρ φ) = K = K �f(ρ) φ as required. If �|= φ but

∨
k βk |= φ

then K ∩ (K �ρ φ) = K ∩ Cn(∅) = Cn(∅) while, since
∨

k βk |= φ is
equivalent to β1 ∨ ∨

k>1(βk ∨ β1) |= φ, we get K �f(ρ) φ = Cn(∅). Thus
in this case too we get the required conclusion. So suppose

∨
k βk �|= φ,

equivalently, β1 ∨ ∨
k>1(βk ∨ β1) �|= φ. Then K ∩ (K �ρ φ) = K ∩ Cn(βi),

where i = min{k | βk �|= φ}. Since K = Cn(β1), this is in turn equal to
Cn(β1) ∩ Cn(βi) = Cn(βi ∨ β1). Meanwhile

K �f(ρ) φ =
{
Cn(β1) if β1 �|= φ
Cn(βj ∨ β1) otherwise,

where j = min{k | k > 1 and βj ∨ β1 �|= φ}. Hence if β1 �|= φ then
K �f(ρ) φ = Cn(β1) = Cn(β1 ∨ β1) = K ∩ (K �ρ φ) as required. If
however, β1 |= φ then we may write j = min{k | βj ∨ β1 �|= φ} and, since
in this case βk ∨ β1 |= φ iff βk |= φ for all k, we get j = min{k | βk �|= φ}.
Hence K �f(ρ) φ = Cn(βj ∨ β1) = K ∩ (K �ρ φ) as required.

Thus the incarceration of a linear liberation operator is again a linear
liberation operator which furthermore satisfies (Inclusion). Also, every linear
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liberation operator satisfying (Inclusion) arises as the incarceration of some
linear liberation operator, namely itself. Note too, that the postulates for
linear liberation together with (Inclusion) characterise the first special case
of linear liberation (i.e., the sequences which satisfy (A)).

What happens when we take the incarceration of a σ-liberation operator?
From Prop. 3.15 and Corollary 3.19 we know that � forms a σ-liberation
operator iff � = �ρ for some K-sequence ρ which satisfies (D). Thus we
know from Prop. 5.3 that if � is the incarceration of a σ-liberation operator
then � = �f(ρ) for some K-sequence ρ which satisfies (D). We can show the
following:

Proposition 5.4. If a K-sequence ρ satisfies (D) then so does f(ρ).

Proof. Suppose ρ = (β1, . . . , βm). Clearly β1 |= β1 ∨ βj for all 1 < j. So it
remains to show that for all 1 < i < j either β1 ∨ βi |= β1 ∨ βj or (β1 ∨ βi)∧
(β1∨βj) |= β1∨

∨
1<k<i(β1∨βk), equivalently, β1∨(βi∧βj) |=

∨
k<i βk. Since

ρ satisfies (D) we know either βi |= βj or βi ∧ βj |=
∨

k<i βk. But the former
implies β1 ∨ βi |= β1 ∨ βj , while the latter implies β1 ∨ (βi ∧ βj) |=

∨
k<i βk.

Hence f(ρ) satisfies (D).

Thus the condition (D) on K-sequences remains invariant under the
modification f . (The same cannot be said of (C).) Therefore every incarcer-
ation of a σ-liberation operator has the form �ρ for some ρ satisfying (D).
Hence as a corollary we may state:

Corollary 5.5. The incarceration of a σ-liberation operator is again a
σ-liberation operator which furthermore satisfies (Inclusion). Also, every σ-
liberation operator satisfying (Inclusion) arises as the incarceration of some
σ-liberation operator, namely itself.

5.2. Retraction to revision

To revise a belief set K by a given sentence φ means to modify K so that it
includes φ, while preserving consistency. From each retraction operator �
for K we can define the revision operator ∗ for K via the Levi Identity:

(Levi Identity) K ∗ φ = (K � ¬φ) + φ.

The Levi Identity is usually employed to define a revision operator from a
given withdrawal operator.

A central result in the AGM theory of belief change [1, 13] shows that if
� is a withdrawal operator then ∗ satisfies all the basic AGM postulates for
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revision 11. The next result confirms that it is not necessary for � to satisfy
(Inclusion) for this result to go through.

Proposition 5.6. Let � be a retraction operator for K and let ∗ be de-
fined from � via the Levi Identity. Then ∗ satisfies the basic AGM revision
postulates (relative to K). Furthermore, for every operator ∗ for K which
satisfies the basic AGM revision postulates there exists a retraction operator
� for K such that ∗ may be obtained from � via the Levi Identity.

Proof. The first part of this proposition follows from the proof of the AGM
result for withdrawal operators (see, e.g. [8]), and by noticing that in the
only place in that proof where (Inclusion) is applied, namely in showing
that the revision postulate “K ∗ φ ⊆ K + φ” holds, it can be replaced
with (Vacuity) (in fact (Weak Vacuity 1) – see below). To see this we have
K ∗φ = (K � ¬φ)+φ ⊆ (K+φ)+φ = K+φ. The second part follows from
the well-known result in AGM theory that every operator ∗ satisfying the
basic AGM revision postulates may be obtained via the Levi Identity from a
partial meet contraction operator for K (i.e., satisfying (L1)–(L6)). Clearly
every partial meet contraction operator is a retraction operator according to
our definition.

The above result shows us, then, that retraction operators are as suitable
as withdrawal operators when using them as stepping-stones to revision. For
linear liberation operators we can say more:

Proposition 5.7. Let � and ∗ be as in the previous proposition. Then if �
additionally satisfies (Hyperregularity) then ∗ will satisfy both supplementary
AGM revision postulates. Furthermore, for every operator ∗ for K which
satisfies all the AGM revision postulates (basic plus supplementary) there
exists a retraction operator � for K satisfying (Hyperregularity) such that ∗
may be obtained from � via the Levi Identity.

Proof. To show the first part of the proposition, first note that the two
AGM supplementary revision postulates can equivalently be expressed as
the single postulate:

If ¬φ �∈ K ∗ θ then K ∗ (θ ∧ φ) = (K ∗ θ) + φ.

Now suppose ¬φ �∈ K ∗ θ, i.e., ¬φ �∈ (K � ¬θ) + θ. This implies θ → ¬φ
�∈ K � ¬θ which, since |= (θ → ¬φ) ↔ ¬(θ ∧ φ) and � satisfies (L1), is

11[11] points out that � is not required to satisfy (Closure) for this result. For the full
list of (basic plus supplementary) AGM revision postulates we refer the reader to, e.g.,
[8, 11].
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equivalent to ¬(θ ∧ φ) �∈ K � ¬θ. Since K � ¬θ = K � (¬(θ ∧ φ) ∧ ¬θ)
(using (L1)), this in turn is equivalent to ¬(θ ∧ φ) �∈ K � (¬(θ ∧ φ) ∧ ¬θ).
Applying (Hyperregularity) to this allows us to deduce K � ¬(θ∧φ) = K �
(¬(θ ∧ φ) ∧ ¬θ) = K � ¬θ. Hence: K ∗ (θ ∧ φ) = (K � ¬(θ ∧ φ)) + (θ ∧ φ)
= (K � ¬θ) + (θ ∧ φ) = ((K � ¬θ) + θ) + φ = (K ∗ θ) + φ as required.

The second part is shown by observing that every severe withdrawal
operator is a retraction operator satisfying (Hyperregularity). From results
in [17, Sect. 7] we know that, given any operator ∗ for K satisfying the full
list of AGM revision postulates, there is a severe withdrawal operator which,
when the Levi Identity is applied to it, yields ∗.

For a given retraction operator � what happens if, instead of applying
the Levi Identity to �, we first take its incarceration � and then apply the
Levi Identity to �? The next result shows that this has no effect on the
resulting revision operator, i.e., that � and � are revision-equivalent [13].

Proposition 5.8. Let � be a retraction operator for K and let � be the
incarceration of �. Then, for all φ ∈ L, (K � ¬φ) + φ = (K � ¬φ) + φ.

Proof. Since every retraction operator satisfies (Weak Vacuity 1) (see be-
low), we have (K � ¬φ)+φ ⊆ (K+φ)+φ = K+φ, and so (K � ¬φ)+φ =
(K + φ) ∩ ((K � ¬φ) + φ) = (K ∩ (K � ¬φ)) + φ = (K � ¬φ) + φ.

The above result may seem surprising. Since it is perfectly possible that
K � φ ⊃ K � φ, it might be expected that revision based on � could
sometimes lead to a strictly larger belief set than revision based on just �.

Overall, the results of this section have shown that it is possible to get
a long way in the theory of belief change without (Inclusion). However we
end this section by remarking that it is possible to get away with even less
of the AGM contraction postulates, for, as a check of their proofs reveals,
Propositions 5.2, 5.6, 5.7 and 5.8 do not even need the full power of (Vacuity);
they can be derived using both of its following two weakenings, the first of
which also doubles as another weakening of (Inclusion):

• K � φ ⊆ K + ¬φ (Weak Vacuity 1)
• If φ �∈ K then K ⊆ K � φ (Weak Vacuity 2)

6. Conclusion

We have provided a formal study of belief change operators that do not sat-
isfy (Inclusion), to do justice to the intuition that dropping a belief may lead
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to the inclusion of others in the agent’s corpus. We provided two models of
liberation via retraction operators, σ-liberation and linear liberation, both of
which utilised a finite sequence of sentences to guide the operation of belief
removal. We showed that the class of σ-liberation operators is included in the
class of linear liberation operators, and provided axiomatic characterisations
for each class. We also characterised a number of subclasses of linear libera-
tion, including severe withdrawal. Finally we showed how a given retraction
operator can be transformed into either a withdrawal operator (satisfying
(Inclusion)) or a revision operator.

7. Future Work

For future work we would like to generalise the σ-liberation model. Here,
the belief sequences σ consisted of sentences which, intuitively, represented
previous revision inputs the agent has received. Previous retraction steps
which might have taken place are not represented. This means that we are
restricting the domain of σ-liberation to those belief sets K which are formed
by a process of revision alone. One natural way to record retraction steps
would be to allow σ to include so-called disbeliefs γ (where γ ∈ L), as seen
in [4], where γ indicates a retraction of γ. This would pave the way for a
sequence-based model of iterated retraction 12: when retracting φ we obtain
a new sequence by appending φ to the end of σ. This new sequence is then
ready for the next input. We intend a full investigation of the properties
of such a model. Other directions for further research are to consider more
general models that do not satisfy (Vacuity) as well as (Inclusion), and also to
find other sequence-based constructions which are able to model operations,
such as AGM contraction and systematic withdrawal [14], that cannot be
handled with our current ones. Finally, note that we have restricted ourselves
to working with a finitely generated propositional language L. This choice
brought representational advantages such as being able to identify a belief set
with a single sentence. We would like to consider the general case involving
a countable number of propositional variables.
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