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Abstract

An intelligent agent may receive information about its environment from several different sources. How should the agent merge

these items of information into a single, consistent piece? Taking our lead from the contraction + expansion approach to belief revi-

sion, we envisage a two-stage approach to this problem. The first stage consists of weakening the individual pieces of information

into a form in which they can be consistently added together. The second, trivial, stage then consists of simply adding together the

information thus obtained. This paper is devoted mainly to the first stage of this process, which we call social contraction. We con-

sider both a postulational and a procedural approach to social contraction. The latter builds on the author�s framework of belief

negotiation models. With the help of Spohn-type rankings we provide two possible instantiations of this extended framework. This

leads to two interesting concrete families of social contraction functions.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction and preliminaries

An intelligent agent may receive information about

its environment from several different sources. How

should the agent merge these pieces of information into

a single, consistent piece? This question has recently re-

ceived various treatments (see e.g. [5,7,12,13,15–17,20]).

The simplest thing to do would be to just take the given

pieces of information and conjoin them. While this strat-
egy would be fine if the pieces of information are jointly

consistent, it could well be that some of the pieces stand

in contradiction, in which case the strategy breaks

down. In this paper we envisage a two-stage approach

to the problem: (i) the individual, raw pieces of informa-

tion are manipulated (more precisely, weakened) into a

form in which they become jointly consistent, and then

(ii) the pieces thus obtained are conjoined. Stage (ii) is
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trivial. Stage (i) is not, and so forms the main topic of
this paper.

A precedent for this two-stage approach can be found

in the literature on the closely-related area of belief revi-

sion [1,8,11]. Belief revision may essentially be thought

of as ‘‘binary merging’’. It addresses the problem of

how to merge one item of information, usually taken

to represent the current beliefs of some agent, with an-

other item, representing some new piece of information
which the agent acquires. The idea, which dates back to

[14] and is given succinct expression by the Levi Identity

[8], is that this operation of revision is decomposed into

two sub-operations: (i) contraction: the current informa-

tion is weakened so that it becomes consistent with the

new information, then (ii) expansion: the new informa-

tion is simply added to the result. Note that, in (i), only

the current information is weakened, not the new. This
reflects the traditional assumption that the new informa-

tion is always completely reliable. What we seek in this

paper is a generalised version of the contraction opera-

tion. One in which several items of information may

all be weakened simultaneously so that they become
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1 But see [6] for a treatment of (individual, not social) information-

removal operators in which the removal of a piece of information can

directly lead to the introduction of new information.
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consistent with one another. For this reason we call the

operations we are interested in social contraction func-

tions (SC functions for short).

We shall examine social contraction from two view-

points: a postulational one and a more procedural

one. For the latter we build on the framework of belief
negotiation models, which was introduced in [5] as a

framework for binary merging in which the merging is

achieved via a negotiation-like process. We extend this

framework so that it can handle information coming

from n sources for n 2 N, and show how a given belief

negotiation model yields an SC function.

The plan of the paper is as follows. We begin in Sec-

tion 2 by formally defining SC functions via a small list
of basic properties we expect such an operation to sat-

isfy. We show how one of these basic properties allows

us to derive, from a given social contraction function, a

list of individual contraction functions (in the traditional

belief revision sense as described above)—one for each

information source. We also describe how a given SC

function yields a merging operator via a kind of ‘‘gener-

alised’’ Levi Identity before ending the section with a
look at a few possible additional postulates for social

contraction, relating to the idea—familiar from belief

revision—of minimal change. The rest of the paper is de-

voted to belief negotiation. The extended framework is

set down in Section 3, where it is shown how each (ex-

tended) belief negotiation model yields an SC function

and, conversely, how every SC function can be said to

arise in this way. As we will see, the framework is set
at a very abstract level. Section 4 is all about putting a

little more flesh on the bones. Making heavy use of

Spohn-type rankings [22] we provide two, intuitively

plausible, instantiations of the parameters of a belief

negotiation model, giving in the process two concrete

families of SC functions. We characterise the behaviour

of the individual contraction functions as well as the

merging operators which are derivable from these partic-
ular families. It turns out that they are all familiar from

the literature. We thus give a new angle on these opera-

tors by providing new ‘‘negotiation-style’’ characterisa-

tions for them. We also test the SC functions from

each of these two families against the extra minimal

change postulates from Section 2. We will see that the

SC functions from the second family fare better than

those from the first in this regard. We conclude in Section
5. Proofs of our results are contained in Appendix A.

1.1. Preliminaries

In this paper we shall follow the example of the

papers on merging mentioned at the start of the intro-

duction, and assume a very simple propositional setting

for the merging problem. (For more complex settings,
e.g., where the items to be merged consist of formulas

of first-order logic, or settings from the area of database
theory, we refer the reader to, e.g., [2–4,9,10].) We let W
be the (finite) set of worlds, i.e., truth-assignments, asso-

ciated with some fixed background propositional lan-

guage generated from finitely many propositional

variables. The set of all non-empty subsets of W we de-

note byB. Given S � W, we use S to denoteW� S. We
assume throughout that we have a fixed finite set

Sources = {0,1, . . . ,n} of information sources (n P 1).

We work semantically throughout, so each item of

information provided by a source i will take the form

of a set Si 2 B (so no source ever provides the ‘‘inconsis-

tent’’ information ;). Such an Si should be interpreted as

the information that the actual ‘‘true’’ world is one of

the worlds in Si. An information profile (relative to
Sources) is an element ofBSources, i.e., a particular assign-

ment of elements of B to the sources. We shall use vec-

tor notation ~S, ~S
1
, etc. to denote information profiles,

with ~S ¼ ðS0; S1; . . . ; SnÞ; ~S
1 ¼ ðS1

0; S
1
1; . . . ; S

1
nÞ, etc. The

idea is that Si is the information in~S belonging to source

i. We will say that an information profile ~S is consistent

when ˙iSi 5 ;, otherwise it is inconsistent. Given two

information profiles ~S
1
and ~S

2
, we will write ~S

1 �~S
2
to

mean S1
i � S2

i for all i 2 Sources. If ~S
1 �~S

2
and

~S
2 6�~S

1
then we will write ~S

1 �~S
2
. Finally if f is a func-

tion with codomain BSources, we will use f ið~SÞ to denote

the i + 1th element of fð~SÞ, i.e., we will have

fð~SÞ ¼ ðf0ð~SÞ; f1ð~SÞ; . . . ; fnð~SÞÞ.
2. Social contraction functions

Our first aim is to get a formal definition of SC func-

tions up and running. Intuitively we want an SC func-

tion to be a function f : BSources ! BSources which, given

an information profile ~S provided by Sources, returns
a new information profile fð~SÞ which represents ~S mod-

ified so that its entries are jointly consistent. We imme-

diately require the following three basic properties of

such an f:

(sc1) ~S � fð~SÞ.
(sc2) fð~SÞ is consistent.
(sc3) If ~S is consistent then fð~SÞ ¼~S.

Rule (sc1) decrees that the modification is carried out by

weakening the individual items of information. Hence, to

obtain consistency, we require that some information

may be taken away from the original items Si. However,

no information is allowed to be added. (This justifies the

name ‘‘social contraction’’.)1 Rule (sc2) says that the end

results of all these weakenings should be jointly consis-
tent. Rule (sc3) says that if ~S is already consistent then



2 At this point it is natural to ask whether it is possible to take the

converse direction and derive an SC function from a given IC merging

operator, just like, in belief revision, it is possible to derive a

contraction operator from a given revision operator via the Harper

Identity [8]. This question will be taken up in future work.
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no modification is necessary. In addition to these three

properties, we shall also find it convenient to assume that,

amongst the sources, there is one distinguished source

who is completely reliable, in the sense that any informa-

tion provided by this source can safely be assumed to be

true and so should never be weakened.We fix source 0 to

be this completely reliable source, and reflect this by insist-

ing on the following rule for SC functions:

(sc4) f0ð~SÞ ¼ S0.

We will denote the set of sources minus 0 by Sources+.

We recognise that the existence of such a completely reli-

able source is not guaranteed in practice. However, sit-
uations where it is absent can be modelled by simply

taking S0 to be the ‘‘trivial’’ information, i.e., take

S0 ¼ W. We now make the following definition.

Definition 1. Let f : BSources ! BSources be a function.
Then f is a social contraction function (relative to

Sources) iff it satisfies (sc1)–(sc4).

We now give a couple of simple examples of SC
functions.

Example 2. (i) A very simple example of an SC function

is the ‘‘trivial’’ SC function ftriv which, given an input
information profile ~S, just returns ~S if this is consistent,

and which otherwise weakens all items of information

(except the completely reliable S0) right out to W.

Precisely, for each i 2 Sources,

f trivi ð~SÞ ¼ Si if i ¼ 0 or ~S is consistent

W otherwise:

(

According to this operator, all items of information (ex-

cept S0) are effectively discarded as soon as input ~S is

inconsistent. This marks ftriv down as quite a ‘‘wasteful’’

operator.

(ii) A slightly more refined version of this is the SC
function for which fð~SÞ again returns ~S if this is

consistent, and otherwise weakens each Si by just

adding S0:

f ið~SÞ ¼
Si if ~S is consistent

Si [ S0 otherwise:

(

It is easy to verify that both the above functions satisfy

(sc1)–(sc4). Some more sophisticated examples of SC

functions will be presented in Section 4, after the ideas

of belief negotiation have been introduced.

A benefit of including (sc4) among our basic postu-

lates is that it gives us access to a list of individual, ‘‘local’’

contraction functions— one for each i 2 Sources+. These

functions reveal, for each source i, how any item of infor-
mation from i would be weakened in the face of a single

second item which is considered completely reliable.
Definition 3. Let f be an SC function and let

i 2 Sources+. We define the function �f
i : B�B ! B

by, for all S, T 2 B; S�f
i T ¼ f ið~UÞ, where ~U 2 BSources

is such that Ui = S, U0 = T and Uj ¼ W for all j 62 {0, i}.

We call �f
i i�s individual contraction function (relative to

f).

(E.g., if n = 3, then S�f
2T is the 3rd entry of the

4-tuple fðT ;W; S;WÞ.) Thus S�f
i T represents the re-

sult—according to f—of weakening information S from
source i so that it becomes consistent with T. We have

the following proposition.

Proposition 4. Let f be an SC function and let

i 2 Sources+. Then �f
i satisfies

(ind1) S � S�f
i T

(ind2) ðS�f
i T Þ \ T 6¼ ;

(ind3) If S \ T 5 ; then S�f
i T ¼ S

The properties (ind1)–(ind3) essentially correspond to

the well-known basic AGM postulates for contraction

(1) minus the Recovery postulate, which in our notation

would correspond to ‘‘S�f
i T � S [ T ’’. It will become

apparent in Section 4 that the �f
i do not generally satisfy

this much debated (see [11, pp. 71–74]) property.
Recall that a principle motivating factor behind

defining SC functions was to use them as a stepping-

stone to defining merging operators. Under this view,

the result of the SC operation on ~S represents an inter-

mediate stage in the merging of the information items

in ~S, in which simple conjunction of the information

items can then be easily facilitated. From a given SC

function f, we define the merging operator Df relative
to Sources using a kind of ‘‘generalised’’ Levi Identity.

We set, for each information profile ~S,

Dfð~SÞ ¼
\n
i¼0

f ið~SÞ:

Our basic postulates for f immediately yield a corre-

sponding set of basic properties for Df: (sc2) gives

Dfð~SÞ 6¼ ;, while from (sc3) we get that ~S is consis-
tent implies Dfð~SÞ ¼

T
iSi. Meanwhile (sc4) gives us

Dfð~SÞ � S0, i.e., the result of the merging must always

imply the information provided by source 0. In this re-

spect Df resembles what is referred to by Konieczny

and Pino-Pérez as a merging operator with integrity con-

straints, or IC merging operator for short [13], S0 here

taking the role of the integrity constraints in their frame-

work.2 (For a more complicated treatment of integrity
constraints, see [3].)
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2.1. More postulates: minimal change

The postulates (sc1)–(sc4) form our core set of postu-

lates for SC functions, but there is clearly scope for

other desirable properties to be put forward. One possi-

ble source for such further postulates is the idea of min-

imal change, i.e., the idea that the modification of ~S to

achieve consistency should be kept as ‘‘small’’ as possi-

ble.3 Our condition (sc3) can already be said to be a mild

embodiment of this idea. In this subsection we look at a

couple of ways in which it can be taken further. The first

rule we consider is the following:

(sc5) For all i 2 Sources+, if Si \
T

j 6¼ifjð~SÞ 6¼ ; then
f ið~SÞ ¼ Si.

The motivation behind this rule is the feeling that, for

each i 2 Sources+, we should take f ið~SÞ ¼ Si whenever

possible. (Recall we already have f0ð~SÞ ¼ S0 by (sc4).)

Clearly if Si \
T

j 6¼ifjð~SÞ 6¼ ; then it is possible. It is easy

to see that, in the presence of (sc1) and (sc4), (sc5) im-

plies (sc3):

Proposition 5. Let f : BSources ! BSources be a function

which satisfies (sc1), (sc4) and (sc5). Then f satisfies (sc3).

It is also quite easy to see that the trivial SC function

ftriv from Example 2 does not satisfy (sc5). Hence (sc5)

doesn�t hold in general for SC functions. However, even

though (sc5) may be appealing from a minimal change

point of view, its adoption can lead to counter-intuitive
results, as the following example shows.

Example 6. Suppose we have three sources, i.e., n = 2.

Suppose source 1 provides the information S 6¼ W,
source 2 provides the complete opposite information S,
and the completely reliable source 0 provides only the

trivial information W. We first claim that for any SC

function f relative to these sources which satisfies (sc5)

we have either f1ðW; S; SÞ ¼ S or f2ðW; S; SÞ ¼ S. To
see this, suppose f1ðW; S; SÞ 6¼ S. Then, by (sc5), we

must have S \ f0ðW; S; SÞ \ f2ðW; S; SÞ ¼ ;. Now

we know by (sc4) (or (sc1)) that f0ðW; S; SÞ ¼ W.
Hence we have S \ f2ðW; S; SÞ ¼ ;, i.e., f2ðW; S; SÞ � S.
Since we also have S � f2ðW; S; SÞ by (sc1), we conclude

that f2ðW; S; SÞ ¼ S which proves the claim. Given this,

we have for the corresponding merging operator that

either DfðW; S; SÞ � S or DfðW; S; SÞ � S. Hence when

merging S and S we are forced to accept one or the

other. However one can easily imagine a situation where

we are unable to find any reason to prefer S to S or vice-
versa (e.g. sources 1 and 2 are equally reliable, equally
3 The idea of minimal change is also a major consideration in several

other merging formalisms such as those presented in [2,3,10].
convinced their information is correct etc.). In this case

it would not seem irrational to withhold judgement on

whether S or S holds in the merging and to expect, say,

DfðW; S; SÞ ¼ W. Merging using an SC function which

satisfies (sc5) rules out this possibility.

This is reminiscent of the problems with so-called

maxichoice contraction and revision in the belief change

literature (see [11, pp. 76–77, 209–210]). To understand

why, it is helpful to change perspective slightly. For each
SC function f and each information profile ~S define the

set X fð~SÞ � Sourcesþ by

X fð~SÞ ¼ fi 2 Sourcesþ j f ið~SÞ ¼ Sig:
In other words, given that Sources provides the infor-

mation ~S, X fð~SÞ is the set of sources (other than 0) who
do not weaken their information according to f. The

principle of minimal change suggests we should take

X fð~SÞ to be an inclusion-maximal subset of Sources+.

This is ensured by the following rule, which bears a

strong resemblance to the contraction postulate ‘‘Full-

ness’’ [11, p. 77] which, in turn, is a characteristic postu-

late of maxichoice contraction:

(sc5+) For all i 2 Sources+, if Si \
T

j2X f ð~SÞSj

� �
\ S0 6¼

; then i 2 X fð~SÞ.

As the next proposition shows, in the presence of

(sc4), (sc5+) implies (sc5). However, in the additional

presence of the following strengthening of (sc1), (sc5)

becomes equivalent to (sc5+):

(sc1+) For all i 2 Sources, either f ið~SÞ ¼ Si or

f ið~SÞ ¼ W.
Proposition 7. Let f : BSources ! BSources be a function

which satisfies (sc4). Then, if f satisfies (sc5+), then f

satisfies (sc5). Furthermore, if f additionally satisfies

(sc1+) then the converse holds.

The rule (sc1+) says, in effect, that the information

from each source is either kept or discarded completely.4

Although Example 6 suggests (sc5) may be too strong

for SC functions, possible weakenings of it are at hand.

One, which brings the individual contraction functions

into the picture, is the following:

(sc6) For all i 2 Sources+, if Si \
T

j 6¼ifjð~SÞ 6¼ ; then

f ið~SÞ � Si�f
i Si.
4 Precisely such an assumption is made explicitly in [7]. Its adoption

here would effectively reduce social contraction to something akin to

belief base contraction [11].



5 We remark that this framework shares some similarities with the

abstract formalisation of negotiation found in [25]. For another recent

attempt at bringing ideas from belief revision and negotiation together

see [18]. A more detailed treatment of the subject of negotiation can be

found in [24].
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Note that Si �f
i Si is the result of weakening Si so that it

becomes consistent with Si and so, intuitively, contains

those worlds in Si which, at least from i�s viewpoint,

are considered the most plausible. Hence the consequent

of (sc6) essentially says that if f ið~SÞ has to contain worlds

outside of Si, then it should contain only the most plau-
sible ones. Unfortunately this rule is rather too weak to

enforce minimal change, a fact which can be seen by

noting that the trivial SC function ftriv validates it.

Rather, (sc6) represents some sort of ‘‘coherence’’ condi-

tion on the results of performing social contraction on

different, but related information profiles (in this case
~S and ðSi;W; . . . ; Si; . . . ;WÞ). Another weakening of

(sc5) is the following:

(sc7) For all i 2 Sources+, if f ið~SÞ 6¼ Si then there exists

some consistent ~T such that ~S � ~T � fð~SÞ and

Si \ ˙j5iTj = ;.

This rule (which has a similar form to the postulate

‘‘Relevance’’ from belief base contraction [11, p. 68])

can be explained as follows: If, for every consistent
information profile ~T lying ‘‘between’’ ~S and fð~SÞ, it

is possible to reduce Ti to Si without incurring incon-

sistency, then it seems safe to say that Si does not in

any way contribute to any inconsistency arising in ~S.
Hence (sc7) provides a way of saying that source i�s
information is weakened only if it somehow contrib-

utes to the inconsistency of the information profile ~S.
Although weaker than (sc5), (sc7) still manages to
be stronger than (sc3) (with the help once again of

(sc4)):

Proposition 8. Let f : BSources ! BSources be a function

which satisfies (sc4) and (sc7). Then f satisfies (sc3).

Meanwhile, unlike (sc6), (sc7) still manages to be

strong enough to exclude ftriv, as the following example

shows.

Example 9. Assume Sources = {0,1,2} and that
~S ¼ ðS; S; SÞ, where S 2 B is such that S 6¼ W. Then

since ~S is inconsistent we have ftrivð~SÞ ¼ ðS;W;WÞ.
Hence we see S2 ¼ S 6¼ W ¼ ftriv2 ð~SÞ. If ftriv satisfied

(sc7) we would deduce the existence of some consistent
~T 2 Bf0; 1; 2g such that ~S � ~T � ftrivð~SÞ and

S2 \ T0 \ T1 = ;. Since both S2 = S and T0 = S (this

latter holding since S0 � T 0 � ftriv0 ð~SÞ and ftriv0 ð~SÞ ¼ S0,
hence T0 = S0 = S), we deduce from S2 \ T0 \ T1 = ;
that T 1 � S. But using this with the fact that T0 = S

gives us ~T is inconsistent—contradiction. Hence it
cannot be that ftriv satisfies (sc7).

Our final postulate is motivated by the feeling that so-

cial contraction should be entirely expressible in terms

of the individual contraction functions.
(sc8) For all i 2 Sources+, f ið~SÞ ¼ Si�f
i

T
j 6¼ifjð~SÞ

� �
.

This postulate can also be interpreted as saying that

the outcome fð~SÞ of an operation of social contraction

represents a kind of equilibrium state. One in which each

source�s information Si is weakened just enough—
according to that source�s own individual contraction

function—to be consistent with the joint result of the

weakenings of all the other sources. Since, by Proposi-

tion 4, �f
i satisfies (ind3), it is easy to see that any SC

function satisfying (sc8) also satisfies (sc5). In fact, as

the following result confirms, only the ‘‘�’’ direction

of (sc8) is needed to prove (sc5).

Proposition 10. Let f : BSources ! BSources be an SC func-

tion such that, for all i 2 Sources+ and all ~S 2 BSources;
f ið~SÞ � Si�f

i

T
j 6¼ifjð~SÞ

� �
. Then f satisfies (sc5).
3. Extended belief negotiation models

So far we have examined social contraction from a

strictly postulational viewpoint. In the rest of the paper
we adopt another, more procedural, perspective. In [5]

the framework of belief negotiation models was intro-

duced as a framework for merging together information

from just two different sources. The idea was that the

pieces of information were weakened incrementally via

a negotiation-like process until ‘‘common ground’’ was

reached, i.e., until they became consistent with one an-

other. The purpose of this section is to extend this
framework so that it handles information coming from

n + 1 different sources (one of which is considered com-

pletely reliable) and show how each such extended belief

negotiation model N yields an SC function fN. Let us

begin with a rough description of the framework.5

Suppose the information profile ~S is provided by

Sources. The idea is that we determine fNð~SÞ as follows.
We start off with the information profile ~S

0 ¼~S. If ~S
0
is

consistent then we just take fNð~SÞ ¼~S
0
. But if ~S

0
is

inconsistent then we perform what may be thought of

as a ‘‘round of negotiation’’ which is just a contest be-

tween the sources. The losers of this contest (for there

may be several) must then ‘‘make some concessions’’,

i.e., make some weakening of their position by admitting

more possibilities, while the others stay the same.

Thus we arrive at the new information profile ~S
1
where

~S
0 �~S

1
. Now if ~S

1
is consistent then we set fNð~SÞ ¼~S

1
.



6 There are a couple of slight notational differences between this

paper and [5]. In the latter paper the function g picked up the actual

information items to be weakened rather than naming the sources from

which they came. Similarly the functions .r were defined directly on

the elements of Smi rather than the set of sources.
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Otherwise the next round of negotiation takes place.

Once again the losers of this round make concessions,

and we keep going like this until ~S
j
is consistent, at

which point we set fNð~SÞ ¼~S
j
. Now let us spell this

out in detail.

Let X denote the set of all finite sequences of informa-

tion profiles. Given x ¼ ð~S0
; . . . ;~S

mÞ 2 X we will say

that x is increasing iff ~S
j �~S

jþ1
for all j = 0,1, . . . ,

m � 1. We define the set of sequences R � X by

R ¼ fx ¼ ð~S0
; . . . ;~S

mÞ 2 X j x is increasing;

and ~S
m
is inconsistentg:

A sequence r ¼ ð~S0
; . . . ;~S

mÞ 2 R represents a possible

stage in the unfinished (since~S
m
is inconsistent) negotia-

tion process starting with~S
0
. Here, the information pro-

file ~S
m
describes the current standpoints of the sources at

stage r. Given j < m, we let rj denote that sequence

consisting of the first j + 1 entries in r, i.e., rj ¼
ð~S0

; . . . ;~S
jÞ.

In the simple negotiation scenario described above

there were two ingredients in need of further specifica-

tion. Firstly, we need to know how a round of negotia-

tion is carried out. To begin with, we don�t worry about

the precise details. We simply assume the existence of a
function g : R ! 2Sources

þ
which selects, at each negotia-

tion stage r, which parties should make concessions.

In other words g returns the losers of the negotiation

round at stage r. Note that here we are building in

our assumption that source 0 is completely reliable

(and so never loses a round) by taking the codomain

of g to be 2Sources
þ
rather than 2Sources. We make two

more mild restrictions on g. First, in order to avoid
deadlock we need to assume that at least one party must

weaken at each stage:

(g0a) g(r) 5 ;.

Second, suppose we reach a negotiation stage r ¼
ð~S0

; . . . ;~S
mÞ such that Sm

i ¼ W for some i 2 Sources+.

Then obviously at this stage i�s information cannot be

weakened any further. We restrict g so that it selects

only sources who still have ‘‘room to manoeuvre’’.

(g0b) i 2 g(r) implies Sm
i 6¼ W

(where r ¼ ð~S0
; . . . ;~S

mÞ).

The second missing ingredient is then to decide what

concessions the losers of a negotiation round should

make. Once again we initially abstract away from the

actual process used to determine this and assume only
that we are given, for each r ¼ ð~S0

; . . . ;~S
mÞ 2 R, a func-

tion .r : Sources
þ ! B with the interpretation that

.r(i) represents the weakening of Sm
i that would be
made, given that i were chosen to weaken at stage r. Once

again to avoid deadlock, we require that this weakening

be strict, unless of course Sm
i ¼ W:

(.0a) Sm
i � .rðiÞ

(.0b) .rðiÞ ¼ Sm
i implies Sm

i ¼ W.

The reader may notice that, even though we are

requiring that .r(i) be a strict weakening of Sm
i for all

i 2 Sources+, these weakenings will only actually be

‘‘carried out’’ if i is a loser of the negotiation round at

stage r, i.e., i 2 g(r). Hence to avoid deadlock it is really

only necessary that .r(i) be a strict weakening of Sm
i for

some i 2 g(r). Our stronger requirement above comes
from our desire to keep our conditions on the.r(i) inde-

pendent from our conditions on g. Note also that here

we again identify information removal with information

weakening. We could, for a more general treatment,

weaken these properties on the .r, although then, of

course, termination of the negotiation process would

no longer be guaranteed.

We can now make the following definition.

Definition 11. An extended belief negotiation model

(relative to Sources) is a pair N ¼ hg; f.rgr2Ri where

g : R ! 2Sources
þ
is a function which satisfies (g0a) and

(g0b), and, for each r 2 R, .r : Sourcesþ ! B is a

function which satisfies (.0a) and (.0b).

From now on when we write ‘‘belief negotiation

model’’ we will mean an extended belief negotiation

model in the sense of the above definition.6

Example 12. (i) Perhaps the simplest example of a belief

negotiation model is Ntriv ¼ hg; f.rgr2Ri where we

take g(r) = Sources+ and .rðiÞ ¼ W for all r 2 R and

i 2 Sources+.

(ii) Another possibility for g would be to select at

stage r ¼ ð~S0; . . . ;~SmÞ 2 R all sources whose current

standpoint is not implied by the information of source 0,

i.e., take gðrÞ ¼ fi 2 Sourcesþ j Sm0 6� Smi g. Another pos-
sibility for the .r would be to add all of Sm0 to Smi if this

produces a strict weakening, otherwise to just add all

worlds, i.e., for all r ¼ ð~S0; . . . ;~SmÞ 2 R and i 2
Sources+,

.rðiÞ ¼
Sm
i [ Sm

0 if Sm
0 6� Sm

i

W otherwise:

�

We will give some more sophisticated examples of belief

negotiation models in Section 4.
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A belief negotiation model N then uniquely deter-

mines, for any given information profile ~S provided by

Sources, the complete process of negotiation on ~S. This
process is returned by the function fN : BSources ! X
given by

fNð~SÞ ¼ r ¼ ð~S0
; . . . ;~S

kÞ
where (i) ~S

0 ¼~S, (ii) k is minimal such that ~S
k
is consis-

tent, and (iii) for each 0 6 j < k we have, for each
i 2 Sources,

Sjþ1
i ¼

.rjðiÞ if i 2 gðrjÞ
Sj
i otherwise:

(

It should be clear that the restrictions we have placed

on g and the .r (along with our assumption that W is

finite) guarantee the existence of the minimal k in (ii)

above. A belief negotiation model N thus yields a func-

tion fN : BSources ! BSources, via fN above, by simply

taking fNð~SÞ ¼~S
k
. It is straightforward to check that

fN forms an SC function. Furthermore, in fact every

SC function can be said to arise in this way.

Theorem 13. Let f : BSources ! BSources be a function.

Then f is an SC function iff f ¼ fN for some belief

negotiation model N.

The reader may like to verify that the function fN
triv

generated from the belief negotiation model Ntriv from

Example 12(i) is in fact equal to the trivial SC function

ftriv from Example 2(i), while the function fN generated

from the belief negotiation model N from Example
12(ii) is equal to the SC function given in Example 2(ii).

In what follows we use DN to denote the merging

operator defined from fN, and �N
i to denote source i�s

individual contraction function �fN

i relative to fN. A

point to note about these latter functions is that they de-

pend only on the functions .r, i.e., we have the follow-

ing result.

Proposition 14. Let N ¼ hg; f.rgr2Ri and N0 ¼
hg0; f.rgr2Ri be two belief negotiation models which

differ only on their first component. Then, for each

i 2 Sources+, we have �N
i ¼ �N0

i .
4. Instantiating the framework

A natural question to ask about the preceding frame-

work is: where do the functions g and .r of a belief

negotiation model come from? In this section we explore
some possibilities—one for the.r and two for g, leading

to two different concrete families of SC functions. To

help us do this we first need to make some extra de-

mands on the type of information provided by our
sources. We assume that each source i 2 Sources+ pro-

vides not only a set Si 2 B, but also some indication

of the plausibility of all the worlds in W. Such an indi-

cation is provided by a ranking.

Definition 15. A ranking is a function r : W ! N. We
extend such an r to a function on B by setting, for each

T 2 B, r(T) = minw2Tr(w). Given S 2 B we say that r is

a ranking anchored on S iff r�1(0) = S.

Example 16. To give an example of a ranking, let�s
assume our background propositional language contains

just two propositional variables, leading W to contain

just four worlds which we denote here by a, b, c, d. Then
we can specify the ranking r in tabular form as follows:
0
 1
 2
 3
r
 a,b
 c
 d
Here, the columns correspond to ranks, so in fact

we have r(a) = r(b) = 0, r(c) = 2 and r(d) = 3. We also

have r({c,d}) = min{r(c), r(d)} = 2 and r({a,c,d}) = min

{r(a), r(c), r(d)} = 0. Meanwhile, since r�1(0) = {a,b}, r

is anchored on {a,b}.

Such rankings, or variants thereof, are a popular tool

in knowledge representation. They can be traced back to

the work of [22] and indeed have already been employed
in the context of both merging (see e.g. [17,19]) and be-

lief revision (see e.g. [23]). A ranking provides, for each

w 2 W, a measure of the plausibility of w being the ac-

tual world. The lower r(w) is, the more plausible it is

considered to be. The plausibility r(T) of a set T of

worlds is identified with that of the most plausible

worlds in T. Rankings also allow us to talk about de-

grees of certainty or degrees of belief. Given S 2 B, we
can interpret rðSÞ as the degree of certainty that the

world is in S—the higher rðSÞ is, i.e., the more implausi-

ble S is, the more certain it is that S contains the actual

world. We now assume that each time a source

i 2 Sources+ provides the information Si, he provides

along with it a ranking anchored on Si. Formally, we as-

sume we are given a ranking assignment for Sources.

Definition 17. A ranking assignment (relative to

Sources) is a function R which assigns, to each

i 2 Sources+ and S 2 B, a ranking [Ri(S)] anchored on

S.

Note we assume source 0 does not provide a ranking,

just S0 as normal. We also make an assumption of com-

mensurability [19], i.e., that all sources use the same scale

when ranking the worlds according to plausibility.

Given this definition, we are now in a position to de-

scribe our first instantiation of the framework.
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4.1. First instantiation

How can we use a ranking assignment R to define

suitable functions g and .r? Turning first to g, our idea

is this: the losers of the negotiation round at stage

r ¼ ð~S0
; . . . ;~S

mÞ should be those sources i who are the
least certain about their current standpoint Sm

i , accord-

ing to the ranking ½RiðS0
i Þ� which they have provided

along with their initial information S0
i . Recall that the

lower the number ½RiðS0
i Þ�ðSm

i Þ is, the less certain i is

about Sm
i . Thus, precisely, we define g1 from R by setting

g1ðrÞ ¼ fi 2 Sourcesþ j Sm
i 6¼ W and ½RiðS0

i Þ�ðSm
i Þ

6 ½RjðS0
j Þ�ðSm

j Þ for all j such that Sm
j 6¼ Wg:

As for defining .r, the method we choose is quite

simple. We assume that, for each r ¼ ð~S0
; . . . ;~S

mÞ 2 R,
if source i has to weaken at stage r, he does so by adding

to Sm
i those worlds not already in Sm

i which are the most

plausible according to the ranking i has provided with
his initial information S0

i . More precisely we set

.rðiÞ ¼ Sm
i [ fw 2 Sm

i j ½RiðS0
i Þ�ðwÞ

6 ½RiðS0
i Þ�ðw0Þ for all w0 2 Sm

i g:

Given a ranking assignment R, we let N1ðRÞ denote the
belief negotiation model hg1, {.r}r2Ri with g1 and the

.r derived from R as above. (It should be clear that

g1 and the .r satisfy the requisite properties from Def-

inition 11.) Let�s now see an example of N1ðRÞ ‘‘in

action’’.

Example 18. For this example we again assume our

background propositional language contains just two

propositional variables, with W ¼ fa; b; c; dg. We also

assume that Sources = {0,1,2}. Suppose source 1 gives

initial information {a}, source 2 gives {c} and com-

pletely reliable source 0 givesW (and so effectively plays

no role in the negotiation). Suppose our ranking

assignment R is such that [R1({a})] and [R2({c})] are
specified as follows (cf. Example 16):
0 1 2 3

[R1({a})] a b c, d
[R2({c})] c a, d b
We construct the complete negotiation process

fN1ðRÞðW; fag; fcgÞ ¼ r stage by stage, starting with

r0 ¼ ðhW; fag; fcgiÞ. Since we have obvious disagree-

ment between sources 1 and 2, a first negotiation round

is required. Now we have ½R1ðfagÞ�ðfagÞ ¼
1 < 2 ¼ ½R2ðfcgÞ�ðfcgÞ, i.e., source 1 is less certain of

his current standpoint than source 2. Hence we have

g1(r0) = {1}, i.e., 1 loses the round and so must weaken.
We have .r0ð1Þ ¼ fag [ fw 2 fag j ½R1ðfagÞ�ðwÞ
is minimalg, i.e., 1 adds to {a} the most plausible

non-a worlds according to [R1({a})]. Since b is

the unique such world, this means .r0ð1Þ ¼ fa; bg and

so we reach the next negotiation stage r1 ¼ ðhW;
fag; fcgi; hW; fa; bg; fcgiÞ. Since consistency has still

not been reached, another negotiation round is neces-
sary. This time we have ½R1ðfagÞ�ðfa; bgÞ ¼ 2 ¼
½R2ðfcgÞ�ðfcgÞ. Hence now both sources are equally

certain of their current standpoints. Hence g1(r1) =
{1,2}, i.e., both sources must weaken. We have .r1
ð1Þ ¼ fa; bg [ fw 2 fa; bg j ½R1ðfagÞ�ðwÞ is minimalg ¼
fa; b; c; dg ¼ W and .r1ð2Þ¼ fcg[fw2fcg j ½R2ðfcgÞ�
ðwÞ is minimalg ¼ fa; c; dg. Hence we reach the next

stage r2 ¼ ðhW; fag; fcgi; hW; fa; bg; fcgi; hW; W;
fa; c; dgiÞ. Since we have now reached consistency, we

end the process here with

fN1ðRÞðW; fag; fcgÞ ¼ r2:

From this we deduce fN1ðRÞðW; fag; fcgÞ ¼ hW;W; fa;
c; dgi. For the corresponding merging operator we have

DN1ðRÞðW; fag; fcgÞ ¼
\2
i¼0

f
N1ðRÞ
i ðW; fag; fcgÞ ¼ fa; c; dg:

As this example illustrates, the combined effect of our g1
and the .r is, roughly speaking, a process in which the

sources simultaneously add worlds rank by rank to their

initial information until consistency is reached. (See Sec-

tion A.3 in Appendix A for a precise elaboration of this

remark.) In particular, this results in the following
behaviour for the individual contraction functions

�N1ðRÞ
i .

Proposition 19. Let R be a ranking assignment and let

i 2 Sources+. Then, for all S, T 2 B, S�N1ðRÞ
i T ¼

fw 2 W j ½RiðSÞ�ðwÞ 6 ½RiðSÞ�ðT Þg.

In other words, when faced with completely reliable

information T, source i weakens his own information
S by simply admitting all worlds which are at least as

plausible as T according to the ranking he provides with

S. From this the following can be shown:

Proposition 20. Let R be a ranking assignment and let

i 2 Sources+. Then the function �N1ðRÞ
i satisfies, in

addition to (ind1)–(ind3) from Proposition 4, the following

two properties:

(ind4) �N1ðRÞ
i ðT 1 [ T 2Þ � S�N1ðRÞ

i T 1.

(ind5) If ðS�N1ðRÞ
i ðT 1 [ T 2ÞÞ \ T 1 6¼ ; then S�N1ðRÞ

i T 1

� S�N1ðRÞ
i ðT 1 [ T 2Þ.
This means that �N1ðRÞ
i belongs to the class of con-

traction operators known as severe withdrawal opera-

tors, which were studied in [21]. The rules (ind4) and

(ind5) essentially correspond to the postulates ð €�7aÞ
and ð €�8Þ given there. In fact (ind5) also corresponds
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to one of the two AGM supplementary contraction pos-

tulates [8]. Rule (ind4) is an ‘‘antitony’’ condition, which

says strengthening the completely reliable information

should result in i having to do more weakening.

Taken together, (ind4) and (ind5) say that weakening

to accommodate T1 should produce the same result as
weakening to accommodate T1 [ T2 provided the weak-

ening which accommodates T1 [ T2 already accommo-

dates T1.

Turning to the merging operator yielded from such a

belief negotiation model N1ðRÞ, we have the following

nice characterisation of DN1ðRÞ.

Proposition 21. Let R be a ranking assignment. Then,
for all ~S 2 BSources, we have DN1ðRÞð~SÞ ¼ fw 2 S0 j
maxi2Sourcesþ ½RiðSiÞ�ðwÞ is minimalg.

This ‘‘minimax’’ operator is a generalised version of

the merging operator with integrity constraints DMax

given in [13], which employs a particular family of rank-

ing assignments based on a notion of (symmetric) dis-

tance between propositional worlds. Similar operators

are also discussed in [17,19,20], and are shown to satisfy

several interesting properties.

How do the SC functions fN1ðRÞ fare with regard to
the minimal change postulates from Section 2.1? Well

quite badly as it turns out. Indeed they do not, in gen-

eral, satisfy even either of the weaker postulates (sc6)

and (sc7) mentioned there. The ranking assignment R

used in Example 18 provides a counter-example against

(sc6). To see this note that, in that example, we have

fag \ f
N1ðRÞ
0 ðW; fag; fcgÞ \ f

N1ðRÞ
2 ðW; fag; fcgÞ

¼ fag \W \ fa; c; dg 6¼ ;:

Now if fN1ðRÞ satisfied (sc6) we would conclude

f
N1ðRÞ
1 ðW; fag; fcgÞ � fag�N1ðRÞ

1 fag:
But f

N1ðRÞ
1 ðW; fag; fcgÞ ¼ W and fag�N1ðRÞ

1 fag ¼
fa; bg. Hence fN1ðRÞ does not satisfy (sc6). That the

fN1ðRÞ don�t validate (sc7) can be shown by the following

counter-example.

Example 22. As in Example 18 we again assume
W ¼ fa; b; c; dg, Sources = {0,1,2}, and that Sources

provide the information profile ~S ¼ ðW; fag; fcgÞ. This
time, however, let the ranking assignment R be such that

[R1({a})] and [R2({c})] are specified as follows
0 1 2

[R1({a})] a c b, d
[R2({c})] c b a, d
Then it can be checked that fN1ðRÞð~SÞ ¼
ðW; fa; cg; fb; cgÞ. Clearly f

N1ðRÞ
2 ð~SÞ 6¼ S2, hence if
fN1ðRÞ satisfied (sc7) we would deduce that there is some

consistent ~T such that ~S � ~T � fN1ðRÞð~SÞ and

S2 \ T0 \ T1 = ;. Since ~S � ~T we must have T 0 ¼ W
and so, since S2 = {c}, this latter amounts to saying

c 62 T1. But it is straightforward to see that if
~T � fN1ðRÞð~SÞ and c 62 T1 then ~T must be inconsistent.
Hence (sc7) cannot hold.

It would be interesting to find out if there are any

additional conditions we could place on g2 or on the
.r which could help to capture (sc7) for fN1ðRÞ.

Since, as we remarked at the end of Section 2.1, the

‘‘equilibrium’’ property (sc8) implies (sc5) (and therefore

also (sc6) and (sc7)), this means that (sc8) also fails to

hold for fN1ðRÞ. However, we can at least show that

the fN1ðRÞ do satisfy ‘‘one half’’ of (sc8).

Proposition 23. Let R be a ranking assignment. Then, for

all i 2 Sources+ and all ~S 2 BSources, we have

f
N1ðRÞ
i ð~SÞ � Si�N1ðRÞ

i

T
j 6¼if

N1ðRÞ
j ð~SÞ

� �
.

Summing up, it seems, interestingly, that, while
DN1ðRÞ might be quite well-behaved, there still seems to

be room for improvement regarding the behaviour of

fN1ðRÞ.

4.2. Second instantiation

Our second instantiation of the framework is about

taking a more orderly approach to the negotiation pro-
cess. The idea now is that the sources in Sources+ each

take it in turn to weaken their information according

to some given fixed running order. Each source, during

his turn, repeatedly weakens his information until it be-

comes jointly consistent with the information of all the

sources who have taken their turn already. This

amounts to fixing fNð~SÞ one element at a time, starting

with fN0 ð~SÞ ¼ S0. So, using � to denote a given strict
total order on Sources+ and assuming i1 � i2 � 	 	 	 � in,

we first focus on i1 and repeatedly weaken Si1 until it be-

comes consistent with S0. The result of this weakening

we will take to be fNi1 ð~SÞ. Of course it may be that

Si1 \ S0 6¼ ; to begin with, in which case i1 needn�t do
any weakening at all. Next we focus on i2 and repeatedly

weaken Si2 until it becomes consistent with fNi1 ð~SÞ \ S0.

The result of this weakening we will take to be fNi2 ð~SÞ.
Then it is the turn of i3, and so on through the rest of

the sources. For simplicity, and without loss of general-

ity, in what follows we shall take � to be just the usual

ordering < on the natural numbers, i.e., we assume

source 1 weakens first, followed by source 2, then source

3, and so on.

To fit this idea into our framework we need to define

suitable functions g and .r. For the former we define
the function g2 : R ! 2Sources

þ
by setting, for each nego-

tiation stage r ¼ ð~S0
; . . . ;~S

mÞ,
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g2ðrÞ ¼ fig; where

i 2 Sourcesþ is minimal such that
\
j6i

Sm
j ¼ ;:

For the .r we shall assume the weakenings are carried

out in exactly the same manner as before with the help

of a given ranking assignment R. Thus we define the be-

lief negotiation model N2ðRÞ ¼ hg2; f.rgr2Ri where

now g2 is defined as above and the .r are defined from

R as in the previous subsection. (Again it is obvious that
g2 satisfies the requisite properties from Definition 11.)

Let us give a worked example of a belief negotiation

model of this type.

Example 24. Suppose once more that W ¼ fa; b; c; dg,
but this time that Sources = {0,1,2,3}. We suppose that

our sources provide the information profile
~S ¼ ðfa; b; cg; fdg; fa; b; dg; fcgÞ. We will use the belief

negotiation model N2ðRÞ, where R is such that

[R1({d})], [R2({a,b,d})] and [R3({c})] are given as

follows:
0
 1
 2
 3
[R1({d})]
 d
 a, b
 c
[R2({a, b, d})]
 a, b, d
 c

[R3({c})]
 c
 d
 a
 b
Let us construct the sequence fN2ðRÞð~SÞ ¼ r stage by

stage, starting with r0 ¼ ð~S0Þ where ~S
0 ¼~S. Clearly ~S

0

is inconsistent, so a first negotiation round is necessary.

According to the definition of g2, determining who must

weaken at this initial negotiation stage is a matter of

going through each of the sources in Sources+ in the

order prescribed by < and selecting the first one for whichT
j6iS

0
j ¼ ;. Starting then with source 1, we immediately

see that
T

j61S
0
j ¼ S0

0 \ S0
1 ¼ fa; b; cg \ fdg ¼ ;. Hence

source 1 is the loser of this negotiation round, i.e.,
g2(r0) = {1}, and so must make some weakening. Since

.r0ð1Þ ¼ fdg [ fw 2 fdg j ½R1ðfdgÞ�ðwÞ is minimalg ¼
fa; b; dg this leads us to the next stage r1 ¼ ð~S0

;~S
1Þ,

where ~S
1 ¼ ðfa; b; cg; fa; b; dg; fa; b; dg; fcgÞ. Since con-

sistency has not yet been reached, a second negotiation

round is necessary. As a result of his weakening at the

previous stage, source 1�s current standpoint is no longer

in conflict with that of source 0, i.e., we have
S1
0 \ S1

1 ¼ fa; b; cg \ fa; b; dg 6¼ ;. Hence source 1 weak-

ens no further. We must consider source 2 next. ButT
j62S

2
j ¼ S1

0 \ S1
1 \ S1

2 ¼ fa;b;cg \ fa;b;dg\ fa;b;dg 6¼ ;
and so 2 need not weaken either. Since source 3

is the only source left, this means we must have

g2(r1) = {3}. Now .r1ð3Þ ¼ fcg[fw2 fcg j ½R3ðfcgÞ�ðwÞ
is minimalg ¼ fc; dg which leads us to the next stage

r2 ¼ ð~S0
;~S

1
;~S

2Þ where ~S2 ¼ ðfa; b; cg; fa; b; dg; fa; b; dg;
fc; dgÞ. Since we have still not reached consistency,

source 3 is required to do yet more weakening, i.e., we

have g2(r2) = {3}. This time we have .r2ð3Þ ¼
fc; dg [ fw 2 fc; dg j ½R3ðfcgÞ�ðwÞ is minimalg ¼ fa; c;dg
leading to the next stage r3 ¼ ð~S0

;~S
1
;~S

2
;~S

3Þ where now
~S
3 ¼ ðfa; b; cg; fa; b; dg; fa; b; dg; fa; c; dgÞ. This time we

have reached consistency, so the process stops here with

fN2ðRÞð~SÞ ¼ r3 and fN2ðRÞð~SÞ ¼~S
3 ¼ ðfa; b; cg; fa; b; dg;

fa; b; dg; fa; c; dgÞ. For the corresponding merging oper-

ator we get DN2ðRÞð~SÞ ¼
T3

i¼0S
3
i ¼ fag.

Note that, by Proposition 14, the �N2ðRÞ
i are the same

as the �N1ðRÞ
i from the previous subsection. What can we

say this time about the SC functions fN2ðRÞ? First of all

we may show the following.

Proposition 25. Let R be a ranking assignment and let

i 2 Sources+. Then, for each information profile ~S, we

have

f
N2ðRÞ
i ð~SÞ ¼ Si�N2ðRÞ

i

\
j<i

f
N2ðRÞ
j ð~SÞ

 !
:

In other words f
N2ðRÞ
i ð~SÞ is equal to the result—

according to i�s individual contraction function relative

to fN2ðRÞ—of weakening Si to be jointly consistent
with all the f

N2ðRÞ
j ð~SÞ for which j < i. Using this together

with the fact that the �N2ðRÞ
i satisfy the properties (ind4)

and (ind5) from Proposition 20 then allows us to

prove:

Proposition 26. Let R be a ranking assignment. Then the

SC function fN2ðRÞ satisfies (sc8).

Thus, imposing a strict ‘‘order of weakening’’ on the

sources has forced our SC function to satisfy the equilib-

rium property (sc8) (and hence also (sc5), (sc6) and

(sc7)). Meanwhile we can characterise DN2ðRÞ with the
help of the following piece of extra notation: We let

<lex denote the lexicographic ordering on Nn, i.e., given

two tuples ~x;~y 2 Nn such that ~x ¼ ðx1; . . . ; xnÞ and
~y ¼ ðy1; . . . ; ynÞ, we have~x<lex~y iff there exists j such that

(i) xj < yj and (ii) xi = yi for all i < j. (Clearly <lex is a

strict total order on Nn.) Then we have the following.

Proposition 27. Let R be a ranking assignment. Then,

using rj as an abbreviation for [Rj(Sj)], we have

DN2ðRÞð~SÞ ¼fw 2 S0 j ðr1ðwÞ; r2ðwÞ; . . . ; rnðwÞÞ is
minimal under <lexg:

Thus DN2ðRÞð~SÞ collects all the ‘‘best’’ worlds in S0, in

the special sense where one world is considered ‘‘better’’

than another if it is assigned lower rank by source 1, or,
in case they are assigned the same rank by 1, it is
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assigned a lower rank by 2, or, in case they are also as-

signed the same rank by 2, it is assigned a lower rank by

3, or, etc. Thus the effect when merging is that the opin-

ion of source i is given precedence over that of i 0 when-

ever i < i 0. Such a lexicographic approach to merging

has been considered in [17] (see Section 4.5 there) where
the ordering < on the sources is interpreted as a given

ordering of reliability on the sources, i.e., the most reli-

able sources are given precedence.
5. Conclusion

We have made a start on the study of social contrac-
tion functions, which are applicable to the problem of

merging information from multiple sources. The inten-

tion is that social contraction is to merging what con-

traction is to belief revision. We have considered both

a postulational and a procedural approach, managing

in the process of the latter to extend the belief negotia-

tion framework of [5]. Our investigations are at an early

stage, and much still needs to be done. From the postu-
lational viewpoint we feel there are still many more pos-

tulates for social contraction waiting to be discovered

and evaluated. From the negotiation viewpoint we

looked in this paper at only two relatively simple possi-

ble ways of instantiating the basic negotiation frame-

work. We are presently looking at various other, more

complex, ways in which this can be done. One sugges-

tion, due to Thomas Meyer, relates to the .r-functions.
Instead of blindly adding all the most plausible worlds

not yet in source i�s current standpoint Sm
i as is done

in this paper, the function .r(i) should be more selective

and add only those which are already included in at least

one of the current standpoints Sm
j of the other sources at

stage r. (If none of these most plausible worlds appear

in any of the Sm
j then .r(i) should add all of them as be-

fore.) Refinements such as this could lead to more inter-
esting social contraction behaviour. Finally, we would

also like to explore more fully the relationship between

the merging operators derived from social contraction

and the integrity constraints merging operators of [13].

In particular, it would be interesting to find out whether

any of the additional minimal change SC postulates

from Section 2.1 induce corresponding postulates for

the derived merging operators.
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Appendix A. Proofs

A.1. Proofs from Section 2
Proof of Proposition 4. Let S; T 2 B and let ~U be the

information profile such thatUi = S,U0 = T andUj ¼ W
for all j 62 {0, i}. Then, we have f ið~SÞ ¼ S�f

i T (by defini-

tion of �f
i ), f0ð~UÞ ¼ T (by (sc4)) and fjð~UÞ ¼ W for all

j 62 {0, i} (by (sc1)). Then to show (ind1) we have

Ui � f ið~UÞ by (sc1), i.e., S � S�f
i T as required. For

(ind2) we know fð~UÞ is consistent by (sc2), i.e.,T
kfkð~UÞ 6¼ ;. But

T
kfkð~UÞ¼ðS�f

i T Þ\T , which gives

the required conclusion. Finally for (ind3) suppose

S \ T = ˙kUk 5 ;. Using (sc3) we deduce that fð~UÞ¼
~U , in particularUi¼ f ið~UÞ, i.e., S¼S�f

i T as required. h

Proof of Proposition 5. Suppose f satisfies (sc1), (sc4)

and (sc5). To show (sc3), suppose ~S is consistent. We
must show f ið~SÞ ¼ Si for all i 2 Sources. If i = 0 then this

holds from (sc4). So suppose i 2 Sources+. Since ~S is

consistent we know Si \ \j5iSj 5 ;. But, using (sc1),

we have
T

j 6¼iSj �
T

j 6¼ifjð~SÞ. Hence, from Si \ \j5iSj 5

; we may deduce Si \
T

j 6¼ifjð~SÞ 6¼ ;. Applying (sc5) to

this then gives f ið~SÞ ¼ Si as required. h

Proof of Proposition 7. For the first part, suppose f sat-
isfies (sc4) and (sc5+). To show (sc5), let i 2 Sources+ and

suppose f ið~SÞ 6¼ Si. We must show Si \
T

j 6¼ifjð~SÞ ¼ ;.
But from f ið~SÞ 6¼ Si we know i 62 X fð~SÞ. This tells us

fj 2 Sources j j 6¼ ig � X fð~SÞ [ f0g and so Si \
T

j 6¼i
fjð~SÞ � Si \ ð

T
j2X f ð~SÞfjð~SÞÞ \ f0ð~SÞ. By definition of

X fð~SÞ we know fjð~SÞ ¼ Sj for all j 2 X fð~SÞ, while also
f0ð~SÞ ¼ S0 by (sc4). Hence Si \

T
j 6¼ifjð~SÞ � Si\ð

T
j2X f ð~SÞ

SjÞ\S0. From i 62X fð~SÞ we have Si\ð
T

j2X f ð~SÞSjÞ\
S0 ¼; by (sc5+). Hence Si\

T
j 6¼ifjð~SÞ¼ ; as required.

For the second part, suppose f satisfies (sc4), (sc5)

and (sc1+). Let i 2 Sources. Then, using (sc1+) and (sc4)

allows us to write
T

j6¼ifjð~SÞ ¼ ð
T

j2X fð~SÞSjÞ \ S0. Hence

we see the antecedents of (sc5) and (sc5+) are equivalent.

Since the consequents of the two rules are clearly also
equivalent, the result follows. h

Proof of Proposition 8. To show (sc3) suppose~S is con-

sistent. We must show f ið~SÞ ¼ Si for all i 2 Sources. The

case i = 0 is handled by (sc4), so let i 2 Sources+.

Suppose for contradiction that f ið~SÞ 6¼ Si. Then (sc7)

tells us there exists some consistent ~T such that
~S � ~T � fð~SÞ and Si \

T
j5iTj = ;. But from ~S � ~T we

get
T

j5iSj �
T

j5iTj, and so from Si \
T

j5iTj = ; we

get Si \
T

j5iSj = ;, i.e.,~S is inconsistent—contradiction.

Hence f ið~SÞ ¼ Si as required. h

Proof of Proposition 10. Let f be an SC function. Let
i 2 Sources+ and suppose Si \

T
j 6¼ifjð~SÞ 6¼ ;. To show

(sc5) we must show f ið~SÞ ¼ Si. But since �f
i satisfies
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(ind3) by Proposition 4 we have Si�f
i ð
T

j 6¼ifjð~SÞÞ ¼ Si.

Hence the assumption that f ið~SÞ � Si�f
i ð
T

j 6¼ifjð~SÞÞ yields
f ið~SÞ � Si. We obtain equality by (sc1). h
A.2. Proofs from Section 3

Proof of Theorem 13. First we show that fN is an SC

function for any belief negotiation model N. We need

to show that fN satisfies (sc1)–(sc4). For (sc1) let
~S 2 BSources and suppose fNð~SÞ ¼ ð~S0; . . . ;~SkÞ. We must

show ~S � fNð~SÞ, i.e., ~S0 �~S
k
. But, for each 0 6 j < k,

we have ~S
j �~S

jþ1
(this is ensured by (.0a)) and so,

since the ‘‘�’’ relation between information profiles is

clearly transitive, we get the required conclusion. Since

we always have ~S
k
is consistent this means fNð~SÞ is

consistent and so (sc2) also holds. For (sc3) we have that

if~S is consistent then we must have fNð~SÞ ¼ ð~SÞ and so

fNð~SÞ ¼~S as required. Finally for (sc4), since 0 62 g(r)
for all r, we clearly have Sj0 ¼ S00 ¼ S0 for all 0 6 j 6 k.

In particular we have Sk0 ¼ S0, i.e., f0ð~SÞ ¼ S0 as

required. Hence fN is indeed an SC function.

Now we show that, given an SC function f, there

exists a belief negotiation model N ¼ hg; f.rgr2Ri such
that f ¼ fN. We define the functions g and .r from f in

turn and then show that f ¼ fN.

Defining g. Given f, we define the function
g : R ! 2Sources

þ
by setting, for each r ¼ ð~S0; . . . ;~SmÞ 2R,

gðrÞ ¼ fi 2 Sourcesþ j Sm
i 6¼ f ið~S

mÞg:
We need to check that g so defined satisfies the con-

ditions (g0a) and (g0b). To show (g0a) is satisfied, i.e.,

that g(r) 5 ;, note first that~Sm
is inconsistent by defini-

tion of the set R. Now suppose for contradiction that

g(r) = ;. Then we must have Sm
i ¼ f ið~S

mÞ for all

i 2 Sources+. Since we additionally have Sm
0 ¼ f0ð~S

mÞ
by (sc4), this means Sm

i ¼ f ið~S
mÞ for all i 2 Sources, i.e.,

~S
m ¼ fð~SmÞ. Hence, since fð~SmÞ is consistent by (sc2), this

gives us that ~S
m

is consistent—contradiction. Hence

g(r) 5 ; as required. Turning to (g0b), we must show

that i 2 g(r) implies Sm
i 6¼ W. But if Sm

i ¼ W then, by

(sc1), we must have Sm
i ¼ f ið~S

mÞ and so i 62 g(r) as

required.

Defining the .r. For each r ¼ ð~S0; . . . ;~SmÞ 2 R we

define the function .r : Sourcesþ ! B by setting, for

each i 2 Sources+,

.rðiÞ ¼
f ið~S

mÞ if Sm
i 6¼ f ið~S

mÞ
W otherwise:

(

We now need to check that the .r so defined satisfy the
properties (.0a) and (.0b). That (.0a) is satisfied, i.e.,

Sm
i � .rðiÞ, follows almost immediately from (sc1). For

(.0b) we must show that .rðiÞ ¼ Sm
i implies Sm

i ¼ W.

So suppose .rðiÞ ¼ Sm
i . Then obviously it cannot be
the case that both .rðiÞ ¼ f ið~S
mÞ and Sm

i 6¼ f ið~S
mÞ. This

rules out the first clause in the definition of .r(i) and

so it must be that we are in the second clause, i.e., that

.rðiÞ ¼ W (and Sm
i ¼ f ið~S

mÞ). Hence, since we assumed

.rðiÞ ¼ Sm
i , we have Sm

i ¼ W as required.

Given N defined above, it remains to show that
fð~SÞ ¼ fNð~SÞ for all information profiles~S. We will show

this by first constructing, for a given ~S, the sequence

fNð~SÞ representing the complete process of negotiation

on ~S. For the case when ~S is consistent we clearly have

fNð~SÞ ¼ ð~SÞ and so fNð~SÞ ¼~S. Since in this case we

know also fð~SÞ ¼~S by (sc3) we get fð~SÞ ¼ fNð~SÞ as

required. So suppose now that ~S is inconsistent. In this

case, we claim that fNð~SÞ ¼ ð~S; fð~SÞÞ. To see this, let
r0 ¼ ð~SÞ 2 R denote the initial negotiation stage and let

r1 ¼ ð~S;~S1Þ denote the stage which follows the first

negotiation round. We show that ~S
1 ¼ fð~SÞ. First, since

0 62 g(r0) as always, we have S10 ¼ S0 ¼ (by (sc4)) f0ð~SÞ.
So now let i 2 Sources+. If i 2 g(r0) then i must weaken

and so S1i ¼ .r0ðiÞ. By definition of g, we have Si 6¼ f ið~SÞ
and so, by definition of .r0 , we have S1i ¼ f ið~SÞ. If

i 62 g(r0) then i does not weaken, i.e., S1i ¼ Si. By
definition of g we have Si ¼ f ið~SÞ. Hence again

S1i ¼ f ið~SÞ as required. Hence ~S
1 ¼ fð~SÞ. Since fð~SÞ is

consistent by (sc2), the negotiation process ends here with

fNð~SÞ ¼ ð~S; fð~SÞÞ and so fNð~SÞ ¼ fð~SÞ as required. h

Proof of Proposition 14. We must show that

S�N
i T ¼ S�N0

i T for all S, T 2 BSources. So, given S and

T, let ~U 2 BSources be such that Ui = S, U0 = T and

Uj ¼ W for j 62 {0, i}. Then we have S�N
i T ¼ fNi ð~UÞ

and S�N0
i T ¼ fN

0

i ð~UÞ. Hence we must show

fNi ð~UÞ ¼ fN
0

i ð~UÞ. We will show that in fact

fNð~UÞ ¼ fN0 ð~UÞ, which clearly suffices. So let

rN ¼ fNð~UÞ ¼ ð~U 0
; . . . ; ~U

kÞ and rN0 ¼ fN0 ð~UÞ ¼
ð~V 0

; . . . ; ~V
lÞ. We will first prove by induction on m that

rN
m ¼ rN0

m for all 0 6 m 6 min{k, l}. For the case m = 0

we have ~U
0 ¼ ~U ¼ ~V

0
and so rN

0 ¼ ð~U 0Þ ¼ ð~V 0Þ ¼ rN0
m

as required. Now suppose 0 < m 6 min{k, l} and that

rN
m�1 ¼ rN0

m�1, i.e., that ~U
s ¼ ~V

s
for all s 6 m � 1. We

must show rN
m ¼ rN0

m , i.e., that additionally ~U
m ¼ ~V

m
.

Since ~U � ~U
m�1 ¼ ~V

m�1
we know Um�1

j ¼ V m�1
j ¼ W

forj 62 {0, i}. Hence, since g and g 0 satisfy (g0b), this

means that at stages rN
m�1 and rN0

m�1, respectively, neither

g nor g 0 selects any source j5 i. Since g and g 0 satisfy

(g0a), this means we must have gðrN
m�1Þ ¼

g0ðrN0
m�1Þ ¼ fig. Hence, for j 62 {0, i} we have again

Um
j ¼ V m

j ¼ W, while Um
i ¼ .rN

m�1
ðiÞ ¼ .rN

0
m�1

ðiÞ ¼ V m
i .

Meanwhile Um
0 ¼ V m

0 ¼ T , hence we have that
Um

j ¼ V m
j for all j 2 Sources, i.e., ~U

m ¼ ~V
m
as required.

This completes the inductive step, and so we have shown

that rN
m ¼ rN0

m for all 0 6 m 6 min{k, l}. Since k, respec-

tively, l, are minimal such that ~U
k
, respectively ~V

l
are

consistent, we must have k = l. Hence we have rN ¼
rN0

, i.e., fNð~UÞ¼ fN0 ð~UÞ. This completes the proof. h
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A.3. Proofs from Section 4.1

For the remaining proofs in the paper it is useful first

to introduce some extra notation. For each ranking

assignment R and each x 2 N we define a function

hR;x : BSources ! BSources by setting, for each ~S 2 BSources,

hR;xi ð~SÞ ¼
fw 2 W j ½RiðSiÞ�ðwÞ 6 xg if i 6¼ 0

Si if i ¼ 0:

�

In other words we have hR;x0 ð~SÞ ¼ S0 while, for each

i 2 Sources+, the entry hR;xi ð~SÞ collects all those worlds

which are awarded a ranking of at most x by the ranking
i provides with Si. Note that the fact that each ranking

[Ri(Si)] is anchored on Si means that we have

hR;0ð~SÞ ¼~S. For the belief negotiation model N1ðRÞ
we can neatly describe the negotiation process in terms

of these functions. First we give the following lemma,

which describes the transition from one negotiation

stage to the next.

Lemma 28. Let R be a ranking assignment and ~S
be an information profile. Suppose fN1ðRÞð~SÞ ¼ r ¼
ð~S0; . . . ;~SkÞ. Then, for each m = 0,1, . . . , k � 1, if
~S
m ¼ hR;xð~SÞ for some x then ~S

mþ1 ¼ hR;yð~SÞ where y is

minimal such that ~S
m � hR;yð~SÞ.

Proof. Assume m is such that ~S
m ¼ hR;xð~SÞ for some x.

For this proof let us abbreviate i�s given ranking [Ri(Si)]

by just ri for each i 2 Sources+. Then let

y0 ¼ mini2SourcesþfriðSm
i Þg. First we claim ~S

mþ1 ¼ hR;y
0 ð~SÞ.

To show this we need to show that Smþ1
i ¼ hR;y

0

i ð~SÞ for

all i 2 Sources+ (clearly we already have Smþ1
0 ¼

S0 ¼ hR;y
0

0 ð~SÞ). There are two cases we need to check:

(a) i 2 g1(rm) and (b) i 62 g1(rm). If i 2 g1(rm), equiva-

lently (by definition of g1) riðSm
i Þ ¼ y0, then we have

Smþ1
i ¼ .rmðiÞ ¼ Sm

i [ fw 2 Sm
i j riðwÞ is minimalg ¼

Sm
i [ fw 2 Sm

i j riðwÞ ¼ y 0g. By the minimality of y 0 we

know there is no w 2 Sm
i such that ri(w) < y 0. Hence we

may just as well write

Smþ1
i ¼ Sm

i [ fw 2 Sm
i j riðwÞ 6 y0g:

Since Sm
i ¼ hR;xi ð~SÞ we may re-write this as

Smþ1
i ¼ fw 2 W j riðwÞ 6 xg [ fw 2 W j x < riðwÞ 6 y0g

¼ fw 2 W j riðwÞ 6 y 0g ¼ hR;y
0

i ð~SÞ as required:

For the case i 62 g(rm), equivalently riðSm
i Þ > y0, we have

Smþ1
i ¼ Sm

i . Using riðSm
i Þ > y0 together with the minimal-

ity of y 0 we know there is no w 2 Sm
i such that ri(w) 6 y 0.

Hence we may again just as well write

Smþ1
i ¼ Sm

i [ fw 2 Sm
i j riðwÞ 6 y0g

and so we again get Smþ1
i ¼ hR;y

0

i ð~SÞ. Hence we have shown
~S
mþ1 ¼ hR;y

0 ð~SÞ. Our result will be proved if we can fur-

thermore show that y 0 is minimal such that ~S
m �
hR;y
0 ð~SÞ. But y 0 ¼ mini2SourcesþfriðSm

i Þg implies that, for

all i 2 Sources+, there is no w 2 Sm
i such that ri(w) < y 0.

Hence, for all i 2 Sources+ and all y00 < y 0 we have

Sm
i ¼ Sm

i [ fw 2 Sm
i j riðwÞ 6 y00g ¼ hR;y

00

i ð~SÞ
and so ~S

m ¼ hR;y
00 ð~SÞ for all y

00
6 y. This proves the

result. h

Given this lemma, we can now better describe the

negotiation process fN1ðRÞð~SÞ ¼ ð~S0
; . . . ;~S

kÞ on ~S under

N1ðRÞ. The process begins with~S
0 ¼~S ¼ hR;0ð~SÞ. If this

is consistent then the process ends, otherwise we carry

on . By Lemma 28 we know that ~S
1 ¼ hR;x1ð~SÞ where

x1 is minimal such that hR;0ð~SÞ � hR;x1ð~SÞ. If this is con-
sistent then we stop, otherwise we carry on. Continuing

the process, we see that fN1ðRÞð~SÞ will take form

fN1ðRÞð~SÞ ¼ ðhR;x0ð~SÞ; hR;x1ð~SÞ; . . . ; hR;xk ð~SÞÞ;
where (i) x0 = 0, (ii) for each 0 6 j, xj+1 is minimal such

that hR;xjð~SÞ � hR;xjþ1ð~SÞ and (iii) k is minimal such that

hR;xk ð~SÞ is consistent. Thus we end up with fN1ðRÞð~SÞ ¼
hR;xk ð~SÞ. Now, it should be clear that for all x < xk it must

be the case that hR;xð~SÞ ¼ hR;xjð~SÞ for some j < k. Hence

we may state the following corollary to Lemma 28.

Corollary 29. Let R be a ranking assignment. Then, for

all ~S 2 BSources, we have fN1ðRÞð~SÞ ¼ hR;zð~SÞ, where z is

minimal such that hR;zð~SÞ is consistent.

We will now make use of this characterisation of

fN1ðRÞ in proving the rest of our results. Before we start

we give one more lemma, which as well as being used in

proving the next proposition will also be used in the

proof of Proposition 25.

Lemma 30. Let R be a ranking assignment, ~S 2 BSources,

i 2 Sources+ and T 2 B. Let z be minimal such that

hR;zi ð~SÞ \ T 6¼ ;. Then z = [Ri(Si)](T).

Proof. Recall that [Ri(Si)](T) = minw2T[Ri(Si)](w).

Clearly we have that there is some w 2 T such that

[Ri(Si)](w) = [Ri(Si)](T), hence we know h
R;½RiðSiÞ�ðT Þ
i ð~SÞ \

T 6¼ ;, while also we have [Ri(Si)](T) 6 [Ri(Si)](w) for

all w 2 T. Hence, for all l < [Ri(Si)](T), there is no

w 2 T such that [Ri(Si)](w) 6 l, i.e., hR;li ð~SÞ \ T ¼ ;.
Hence [Ri(Si)](T) has the required minimality. h
Proof of Proposition 19. Let ~U 2 BSources be such that

Ui = S, U0 = T and Uj ¼ W for all j 62 {0, i}. Then
S�N1ðRÞ

i T ¼ f
N1ðRÞ
i ð~UÞ. By Corollary 29 we have

S�N1ðRÞ
i T ¼ hR;zi ð~UÞ where z is minimal such that

hR;zð~UÞ is consistent. Since hR;z0 ð~UÞ ¼ T , while clearly

hR;zj ð~UÞ ¼ W for all j 62 {0, i}, this amounts to saying

that z is minimal such that hR;zi ð~UÞ \ T 6¼ ;. By Lemma

30 we know z = [Ri(S)](T). Hence S�N1ðRÞ
i T ¼

h
R;½RiðSÞ�ðT Þ
i ð~UÞ¼ fw2W j ½RiðSÞ�ðwÞ6 ½RiðSÞ�ðT Þg, which

completes the proof. h
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Proof of Proposition 20. To show (ind4) suppose

w 2 S�N1ðRÞ
i ðT 1 [ T 2Þ. Then, by Proposition 19,

[Ri(S)](w) 6 [Ri(S)](T1 [ T2). Now, for any ranking r

and any A;B 2 B such that A � B it is easy to show that

r(B) 6 r(A). In particular we have [Ri(S)](T1 [ T2) 6

[Ri(S)](T1) and so we get [Ri(S)](w) 6 [Ri(S)](T1). Using

Proposition 19 again this gives us w 2 S�N1ðRÞ
i T 1 and

so we have shown S�N1ðRÞ
i ðT 1 [ T 2Þ � S�N1ðRÞ

i T 1 as
required.

For (ind5) first note that if ðS�N1ðRÞ
i

ðT 1 [ T 2ÞÞ \ T 1 6¼ ; then there must exist some w 0 2 T1

such that [Ri(S)](w
0) 6 [Ri(S)](T1 [ T2). Hence

½RiðSÞ�ðT 1Þ¼minw2T 1
½RiðSÞ�ðwÞ6 ½RiðSÞ�ðT 1[T 2Þ. Thus,

making use of Proposition 19, we have that

w2 S�N1ðRÞ
i T 1 implies [Ri(S)](w) 6 [Ri(S)](T1) implies

[Ri(S)](w) 6 [Ri(S)](T1 [ T2) implies w2 S�N1ðRÞ
i

ðT 1[T 2Þ. Hence we get S�N1ðRÞ
i T 1 � S�N1ðRÞ

i ðT 1[T 2Þ
as required. h

For the proof of Proposition 21 we will make use of

the following lemma.

Lemma 31. Let R be a ranking assignment and let x 2 N.
Then, for each ~S 2 BSources, we have

T
ih

R;x
i ð~SÞ ¼

fw 2 S0 j maxi2Sourcesþ ½RiðSiÞ�ðwÞ 6 xg.

Proof. For this proof let r(w) abbreviate

maxi2Sourcesþ ½RiðSiÞ�ðwÞ for each w 2 W. Given any

w 2 W we have that w 2
T

ih
R;x
i ð~SÞ iff w 2 S0 (since

hR;x0 ð~SÞ ¼ S0) and [Ri(Si)](w) 6 x for all i 2 Sources+ (by

definition of hR;xi ð~SÞ for i 2 Sources+). Since saying that
[Ri(Si)](w) 6 x for all i 2 Sources+ is the same as saying

r(w) 6 x, the result follows. h

Notice that, as a corollary of this result, for each

w 2 S0 and letting r(w) abbreviate maxi2Sourcesþ

½RiðSiÞ�ðwÞ, we always have w 2
T

ih
R;rðwÞ
i ð~SÞ. This fact

will be used in the next proof.

Proof of Proposition 21. Let ~S 2 BSources. Then, by

definition, DN1ðRÞð~SÞ ¼
T

if
N1ðRÞ
i ð~SÞ. By Corollary 29

we know that fN1ðRÞð~SÞ ¼ hR;zð~SÞ where z is minimal
such that hR;zð~SÞ is consistent. Hence DN1ðRÞ
ð~SÞ ¼

T
ih

R;z
i ð~SÞ. Applying Lemma 31, then, and again

letting r(w) abbreviate maxi2Sourcesþ ½RiðSiÞ�ðwÞ for each

w 2 W, we get that DN1ðRÞð~SÞ ¼ fw 2 S0 j rðwÞ 6 zg.
Hence we need to show

fw 2 S0 j rðwÞ 6 zg ¼ fw 2 S0 j rðwÞ is minimalg:
To show this we need to show that, for all w 2 S0,
r(w) 6 z iff r(w) 6 r(w 0) for all w 0 2 S0. So suppose

w 2 S0 and that r(w) 6 z. We claim that, for all w 0 2
S0, we have z 6 r(w 0). To see this, suppose w 0 2 S0 was

such that r(w 0) < z. By the remark following Lemma

31 we have that w0 2
T

ih
R;rðw0Þ
i ð~SÞ and soT

ih
R;rðw0Þ
i ð~SÞ 6¼ ;. But this contradicts the minimality of
z, and so we must have z 6 r(w 0) for all w 0 2 S0 as

claimed. Given this we can deduce from r(w) 6 z that

r(w) 6 r(w 0) for all w 0 2 S0 as required. For the converse

direction, let w 2 S0 be such that r(w) 6 r(w 0) for all

w 0 2 S0. Since hR;zð~SÞ is consistent, we know that there

exists some w0 2
T

ih
R;z
i ð~SÞ, i.e., that there exists some

w0 2 S0 such that r(w0) 6 z. Hence in particular we

get r(w) 6 r(w0) 6 z as required. This completes the

proof. h

Proof of Proposition 23. Let R be a ranking assignment,
~S 2 BSources and i 2 Sources+. For this proof, we will use

ri to denote the ranking [Ri(Si)]. By Corollary 29 we

know that fN1ðRÞð~SÞ ¼ hR;zð~SÞ where z is minimal such

that hR;zð~SÞ is consistent. We first claim that

ri
T

j 6¼if
N1ðRÞ
j ð~SÞ

� �
6 z. To see this, note that, since

hR;zð~SÞ is consistent, we know there exists some

w0 2 W such that w0 2
T

jh
R;z
j ð~SÞ. In particular we have

w0 2 hR;zi ð~SÞ and so ri(w
0) 6 z. Meanwhile, since also

w0 2
T

j 6¼ih
R;z
j ð~SÞ ¼

T
j 6¼if

N1ðRÞ
j ð~SÞ, we have ri

T
j 6¼if

N1ðRÞ
j

�
ð~SÞÞ 6 riðw0Þ. Putting these two inequalities together

gives us ri
T

j 6¼if
N1ðRÞ
j ð~SÞ

� �
6 z as claimed. Now to prove

the proposition, let w 2 W be such that w 2

Si�N1ðRÞ
i

T
j 6¼if

N1ðRÞ
j ð~SÞ

� �
. Then, by Proposition 19,

riðwÞ 6 ri
T

j 6¼if
N1ðRÞ
j ð~SÞ

� �
. Hence ri(w) 6 z, equivalently

w 2 hR;zi ð~SÞ ¼ f
N1ðRÞ
i ð~SÞ. Thus we have shown

Si�N1ðRÞ
i

T
j 6¼if

N1ðRÞ
j ð~SÞ

� �
� f

N1ðRÞ
i ð~SÞ as required. h
A.4. Proofs from Section 4.2
Proof of Proposition 25. Suppose fN2ðRÞð~SÞ ¼ r ¼
ð~S0; . . . ;~SkÞ and let i 2 Sources+. In this proof we will

denote i�s ranking [Ri(Si)] by just ri. Let l be minimal
such that

T
j<iS

l
j 6¼ ;. In other words, rl is that stage in

the negotiation where it is i�s turn to weaken. Note that i

has not done any weakening up to this stage, i.e.,

Sli ¼ S0i ¼ Si. This is because if i had already weakened,

i.e., we had g2(rt) = {i} for some t < l, then by definition

of g2 this would mean
T

j<iS
t
j 6¼ ;—contradicting the

minimality of l. Also, let l 0 be minimal such thatT
j6iS

l0
j 6¼ ;. Then between stages rl and rl0 , source i—

and only source i—is required to weaken, i.e., we have

g2(rs) = {i} for all l 6 s\ l 0. We now make use again of

the h-notation which we introduced in the last section.

First we need the following lemma.

Lemma 32. For each l 6 s\ l 0, if Ssi ¼ hR;xi ð~SÞ for some

x, then Ssþ1
i ¼ h

R;y
i ð~SÞ, where y is minimal such that

hR;xi ð~SÞ � h
R;y
i ð~SÞ.
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Proof. Let l 6 s < l 0 and suppose Ss
i ¼ hR;xi ð~SÞ for some x.

Since g2(rs) = {i} we have Ssþ1
i ¼ .rsðSs

i Þ ¼ Ss
i [

fw 2 Ss
i j riðwÞ is minimalg. Let y ¼ minw2Ssi

riðwÞ. We

claim then that Ssþ1
i ¼ hR;yi ð~SÞ. To see this note that, using

the fact that Ss
i ¼ hR;xi ð~SÞ, we may re-express Ssþ1

i as

Ssþ1
i ¼ fw j riðwÞ 6 xg [ fw j riðwÞ ¼ yg

¼ fw j riðwÞ 6 yg using the minimality of y

¼ hR;yi ð~SÞ as claimed:

It remains to show that y is in fact minimal such that

hR;xi ð~SÞ � hR;yi ð~SÞ. But, by the minimality of y, for each

x 6 y 0 < y we know there is no w 2 Ss
i such that

ri(w) 6 y 0. Hence, for all x 6 y 0 < y we have
hR;xi ð~SÞ ¼ hR;y

0

i ð~SÞ and so y is indeed minimal such that

hR;xi ð~SÞ � hR;yi ð~SÞ. h

Using this lemma, we can now see that, for each

l 6 s 6 l 0, we have Ss
i ¼ hR;xsi ð~SÞ where (i) xl = 0 (since

Sl
i ¼ Si) and (ii) for l 6 s < l 0, xs+1 is minimal such that

hR;xsi ð~SÞ � h
R;xsþ1

i ð~SÞ. In particular we have Sl0

i ¼ h
R;xl0
i ð~SÞ.

Now, since we assumed
T

j6iS
l0

j 6¼ ;, we knowT
j<iS

l0

j \ h
R;xl0
i ð~SÞ 6¼ ;. We now claim that, for all t < xl0

we have
T

j<iS
l0

j \ hR;ti ð~SÞ ¼ ;. This follows since if

t < xl0 then we must have hR;ti ð~SÞ ¼ hR;xsi ð~SÞ for some

l 6 s < l 0, i.e., hR;ti ð~SÞ ¼ Ss
i for some l 6 s < l 0, and by

the minimality of l 0 we know
T

j6iS
s
j ¼ ;. Since Sl0

j ¼ Ss
j

for all j 2 Sources such that j5 i this givesT
j<iS

l0

j \ hR;ti ð~SÞ ¼ ; as claimed. Hence we have shown

in fact that

Sl0

i ¼ hR;zi ð~SÞ
where z is minimal such that

T
j<iS

l0

j \ hR;zi ð~SÞ 6¼ ;. Now,

by Lemma 30, we know that z ¼ ri
T

j<iS
l0

j

� �
. Hence we

have

Sl0

i ¼ w 2 W j riðwÞ 6 ri
\
j<i

Sl0

j

 !( )
:

Now, by definition of g2 we know that, after stage rl0 ,

neither source i nor any of the sources j < i do any fur-

ther weakening. This is because
T

j6iS
l0

j 6¼ ; and so, for

all l 0 < s and all sources j 0 6 i we will have
T

j6j0S
s
j 6¼ ;

(since ~S
l0 �~S

s
). Hence we know f

N2ðRÞ
j ð~SÞ ¼ Sk

j ¼ Sl0

j

for all j 6 i. Hence we get

f
N2ðRÞ
i ð~SÞ ¼ Sl0

i ¼ w 2 W j riðwÞ 6 ri
\
j<i

Sl0

j

 !( )

¼ w 2 W j riðwÞ 6 ri
\
j<i

f
N2ðRÞ
j ð~SÞ

 !( )

¼ Si�N2ðRÞ
i

\
j<i

f
N2ðRÞ
j ð~SÞ

 !
:

This last step follows from Propositions 19 and 14. This

completes the proof of Proposition 25. h
Proof of Proposition 26. We need to show that, for all

i 2 Sources+,

f
N2ðRÞ
i ð~SÞ ¼ Si�N2ðRÞ

i

\
j 6¼i

f
N2ðRÞ
j ð~SÞ

 !
:

Letting X ¼
T

j<if
N2ðRÞ
j ð~SÞ and Y ¼

T
i<jf

N2ðRÞ
j ð~SÞ this

means we must show f
N2ðRÞ
i ð~SÞ ¼ Si�N2ðRÞ

i ðX \ Y Þ. Prop-
osition 25 tells us f

N2ðRÞ
i ð~SÞ ¼ Si�N2ðRÞ

i X ¼ Si�N2ðRÞ
i

ðX [ ðX \ Y ÞÞ, hence it suffices to show Si�N2ðRÞ
i ðX[

ðX \ Y ÞÞ ¼ Si�N2ðRÞ
i ðX \ Y Þ. Using the fact that �N2ðRÞ

i

satisfies (ind4) and (ind5) from Proposition 20 we know

that this equality holds, provided that ðSi�N2ðRÞ
i X Þ\

ðX \ Y Þ 6¼ ;. But Si�N2ðRÞ
i X ¼ f

N2ðRÞ
i ð~SÞ by Proposition

25, while X \ Y ¼
T

j 6¼if
N2ðRÞ
j ð~SÞ. Hence

ðSi�N2ðRÞ
i X Þ \ ðX \ Y Þ ¼

\
j2Sources

f
N2ðRÞ
j ð~SÞ

and this is non-empty by (sc2), as required. h

Proof of Proposition 27. To improve readability, let us

denote fN2ðRÞ by just f in this proof. Given tuples
~x;~y 2 Nn, we will write ~x6lex~y whenever either ~x<lex~y
or~x ¼~y.

\ � ". Let w 2 DN2ðRÞð~SÞ, i.e., w 2
T

if ið~SÞ. We must

show (i) w 2 S0, and (ii) for all w 0 2 S0, we have

(r1(w), . . . ,rn(w)) 6 lex(r1(w
0), . . . ,rn(w

0)). Since w2 f0ð~SÞ¼
S0 we know (i) holds. To show (ii) let w 0 2 S0. If
(r1(w

0), . . . , rn(w
0)) = (r1(w), . . . , rn(w)) then we are done,

so suppose instead (r1(w
0), . . . , rn(w

0)) 5 (r1(w), . . . , rn(w))
and let j be minimal such that rj(w

0) 5 rj(w). We must

show rj(w) < rj(w
0).But since w2

T
if ið~SÞ we have w2

fjð~SÞ and so, by Propositions 25 and 19, we have

rjðwÞ6 rj
T

k<jfkð~SÞ
� �

, equivalently rj(w) 6 rj(w
00) for all

w00 2
T

k<jfkð~SÞ. Hence if we could show w0 2
T

k<jfkð~SÞ
then we would get rj(w) 6 rj(w

0) and so, since

rj(w
0)5 rj(w), this would give the required rj(w) < rj(w

0).
So let k < j. For k = 0 we already know w0 2 S0 ¼ f0ð~SÞ.
So assume k 5 0. Then by Propositions 25 and 19, to

show w0 2 fkð~SÞ we need to show rkðw0Þ6 rk
T

s<kfsð~SÞ
� �

.

But, by the minimality of j we have rk(w
0) ¼ rk(w) and,

since w2 fkð~SÞ, we have rkðwÞ6 rk
T

s<kfsð~SÞ
� �

. This

gives the required conclusion. Hence w0 2
T

k<jfkð~SÞ as

required.

\ � ". Let w 2 S0 be such that
(r1(w), . . . , rn(w)) 6 lex(r1(w

0), . . . , rn(w
0)) for all w 0 2 S0.

We must show w 2
T

if ið~SÞ. We already have

w 2 f0ð~SÞ ¼ S0. We will now show by induction on k

that w 2 fkð~SÞ for each k = 1, . . . ,n. For k = 1 we need to

show (by Propositions 25 and 19) that r1(w) 6 r1(w
0) for

all w 0 2 S0. But this follows already from the fact that

(r1(w), . . . , rn(w)) 6 lex(r1(w
0), . . . , rn(w

0)) for all w 0 2
S0.Now let 1 < k 6 n and suppose for induction that
w 2

T
s<kfsð~SÞ. By Propositions 25 and 19 we need to
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show rk(w) 6 rk(w
0) for all w0 2

T
s<kfsð~SÞ. So let

w0 2
T

s<kfsð~SÞ. Since w0 2 f0ð~SÞ ¼ S0, we know

(r1(w), . . . , rn(w)) 6 lex (r1(w
0), . . . , rn(w

0)). Hence our

result will be proved if rs(w) = rs(w
0) for all s < k. But,

given s < k, we have w0 2 fsð~SÞ and so rs(w
0) 6 rs(w

00) for
all w00 2

T
t<sf tð~SÞ. Since, using induction, w 2

T
t<sf tð~SÞ,

this means in particular that rs(w
0) 6 rs(w). By a

symmetric argument it can be shown that rs(w) 6 rs(w
0),

hence rs(w) = rs(w
0) as required. Hence we have shown

w 2
T

kfkð~SÞ. This completes the inductive step and so

w 2
T

if ið~SÞ as required. h
References

[1] C. Alchourrón, P. Gärdenfors, D. Makinson, On the logic of

theory change: Partial meet contraction and revision functions,

Journal of Symbolic Logic 50 (1985) 510–530.

[2] M. Arenas, L. Bertossi, J. Chomicki, Consistent query answers in

inconsistent databases, in: Proceedings of the Eighteenth ACM

SIGACT SIGMOD SIGART Symposium on Principles of Data-

base Systems (PODS�99), 1999, pp. 68–79.
[3] O. Arieli, B. Van Nuffelen, M. Denecker, M. Bruynooghe,

Coherent composition of distributed knowledge-bases through

abduction, in: Proceedings of the Eighth International Conference

on Logic for Programming, Artificial Intelligence and Reasoning

(LPAR�01), LNCS, 2250, Springer, Berlin, 2001, pp. 624–638.

[4] C. Baral, S. Kraus, J. Minker, V.S. Subrahmanian, Combining

multiple knowledge bases consisting of first order theories,

Computational Intelligence 8 (1992) 45–71.

[5] R. Booth, A negotiation-style framework for non-prioritised

revision, in: Proceedings of the Eighth Conference on Theoretical

Aspects of Rationality and Knowledge (TARK 2001), 2001, pp.

137–150.

[6] R. Booth, S. Chopra, A. Ghose, T. Meyer, Belief liberation (and

retraction), in: Proceedings of the Ninth Conference on Theoret-

ical Aspects of Rationality and Knowledge (TARK 2003), 2003,

pp. 159–172.

[7] J. Cantwell, Resolving conflicting information, Journal of Logic,

Language and Information 7 (2) (1998) 191–220.

[8] P. Gärdenfors, Knowledge in Flux, MIT Press, Cambridge, MA,

1988.

[9] J. Grant, J. Minker, A logic-based approach to data integration,

Theory and Practice of Logic Programming 2 (3) (2002) 323–368.

[10] G. Greco, S. Greco, E. Zumpano, A logic programming approach

to the integration, repairing and querying of inconsistent dat-
abases, in: Proceedings of the Seventeenth International Confer-

ence on Logic Programming (ICLP�01), LNCS, 2237, Springer,

Berlin, 2001, pp. 348–364.

[11] S.O. Hansson, A Textbook of Belief Dynamics, Kluwer Academic

Publishers, Dordrecht, 1999.
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