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Abstract

An intelligent agent may receive information about its environment from several different sources. How should the agent merge
these items of information into a single, consistent piece? Taking our lead from the contraction + expansion approach to belief revi-
sion, we envisage a two-stage approach to this problem. The first stage consists of weakening the individual pieces of information
into a form in which they can be consistently added together. The second, trivial, stage then consists of simply adding together the
information thus obtained. This paper is devoted mainly to the first stage of this process, which we call social contraction. We con-
sider both a postulational and a procedural approach to social contraction. The latter builds on the author’s framework of belief
negotiation models. With the help of Spohn-type rankings we provide two possible instantiations of this extended framework. This
leads to two interesting concrete families of social contraction functions.
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1. Introduction and preliminaries

An intelligent agent may receive information about
its environment from several different sources. How
should the agent merge these pieces of information into
a single, consistent piece? This question has recently re-
ceived various treatments (see e.g. [5,7,12,13,15-17,20]).
The simplest thing to do would be to just take the given
pieces of information and conjoin them. While this strat-
egy would be fine if the pieces of information are jointly
consistent, it could well be that some of the pieces stand
in contradiction, in which case the strategy breaks
down. In this paper we envisage a two-stage approach
to the problem: (i) the individual, raw pieces of informa-
tion are manipulated (more precisely, weakened) into a
form in which they become jointly consistent, and then
(i1) the pieces thus obtained are conjoined. Stage (ii) is
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trivial. Stage (i) is not, and so forms the main topic of
this paper.

A precedent for this two-stage approach can be found
in the literature on the closely-related area of belief revi-
sion [1,8,11]. Belief revision may essentially be thought
of as “binary merging”. It addresses the problem of
how to merge one item of information, usually taken
to represent the current beliefs of some agent, with an-
other item, representing some new piece of information
which the agent acquires. The idea, which dates back to
[14] and is given succinct expression by the Levi Identity
[8], is that this operation of revision is decomposed into
two sub-operations: (i) contraction: the current informa-
tion is weakened so that it becomes consistent with the
new information, then (ii) expansion: the new informa-
tion is simply added to the result. Note that, in (i), only
the current information is weakened, not the new. This
reflects the traditional assumption that the new informa-
tion is always completely reliable. What we seek in this
paper is a generalised version of the contraction opera-
tion. One in which several items of information may
all be weakened simultaneously so that they become
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consistent with one another. For this reason we call the
operations we are interested in social contraction func-
tions (SC functions for short).

We shall examine social contraction from two view-
points: a postulational one and a more procedural
one. For the latter we build on the framework of belief
negotiation models, which was introduced in [5] as a
framework for binary merging in which the merging is
achieved via a negotiation-like process. We extend this
framework so that it can handle information coming
from n sources for n € N, and show how a given belief
negotiation model yields an SC function.

The plan of the paper is as follows. We begin in Sec-
tion 2 by formally defining SC functions via a small list
of basic properties we expect such an operation to sat-
isfy. We show how one of these basic properties allows
us to derive, from a given social contraction function, a
list of individual contraction functions (in the traditional
belief revision sense as described above)—one for each
information source. We also describe how a given SC
function yields a merging operator via a kind of ““gener-
alised” Levi Identity before ending the section with a
look at a few possible additional postulates for social
contraction, relating to the idea—familiar from belief
revision—of minimal change. The rest of the paper is de-
voted to belief negotiation. The extended framework is
set down in Section 3, where it is shown how each (ex-
tended) belief negotiation model yields an SC function
and, conversely, how every SC function can be said to
arise in this way. As we will see, the framework is set
at a very abstract level. Section 4 is all about putting a
little more flesh on the bones. Making heavy use of
Spohn-type rankings [22] we provide two, intuitively
plausible, instantiations of the parameters of a belief
negotiation model, giving in the process two concrete
families of SC functions. We characterise the behaviour
of the individual contraction functions as well as the
merging operators which are derivable from these partic-
ular families. It turns out that they are all familiar from
the literature. We thus give a new angle on these opera-
tors by providing new ‘“‘negotiation-style” characterisa-
tions for them. We also test the SC functions from
each of these two families against the extra minimal
change postulates from Section 2. We will see that the
SC functions from the second family fare better than
those from the first in this regard. We conclude in Section
5. Proofs of our results are contained in Appendix A.

1.1. Preliminaries

In this paper we shall follow the example of the
papers on merging mentioned at the start of the intro-
duction, and assume a very simple propositional setting
for the merging problem. (For more complex settings,
e.g., where the items to be merged consist of formulas
of first-order logic, or settings from the area of database

theory, we refer the reader to, e.g., [2-4,9,10].) We let #~
be the (finite) set of worlds, i.e., truth-assignments, asso-
ciated with some fixed background propositional lan-
guage generated from finitely many propositional
variables. The set of all non-empty subsets of #~ we de-
note by 4. Given S C %", we use S to denote ¥~ — S. We
assume throughout that we have a fixed finite set
Sources = {0,1,...,n} of information sources (n = 1).
We work semantically throughout, so each item of
information provided by a source i will take the form
of a set S; € # (so no source ever provides the “inconsis-
tent” information §)). Such an S; should be interpreted as
the information that the actual “true” world is one of
the worlds in S;. An information profile (relative to
Sources) is an element of #°"“ i.e., a particular assign-
ment of elemgnti 1of 4 to the sources. We shall use vec-
tor ngtation S, S, etc. to_’gienote information profiles,
with S = (So,S1,...,8,), S = (S5, 57,---,S}), etc. The
idea is that S; is the information in § belonging to source
i. We will say that an information profile S is consistent
when N;S; # 0, otherwise it is inconsistent. Given two

information profiles §1 and §2, we will write §1 - §2 to
mean S CS7 for all i€ Sources. If g - §° and

5 Z 5" then we will write §' - 5. Finally if f is a func-
tion with codomain %%, we will use f,(S) to denote
the i+ 1th element of f(S), ie, we will have

- - —

£(S) = (£,(5),£,(S), ..., £.(S)).
2. Social contraction functions

Our first aim is to get a formal definition of SC func-
tions up and running. Intuitively we want an SC func-
tion to be a function f : % — $5"* which, given
an information profile S provided by Sources, returns
a new information profile f(S) which represents S mod-
ified so that its entries are jointly consistent. We imme-
diately require the following three basic properties of
such an f:

(scl) S C£(S).

(sc2) £ (S) is consistent. o
(sc3) If S is consistent then f(S) = S.

Rule (scl) decrees that the modification is carried out by
weakening the individual items of information. Hence, to
obtain consistency, we require that some information
may be taken away from the original items S;. However,
no information is allowed to be added. (This justifies the
name “social contraction”.)' Rule (sc2) says that the end
results of all these weakenings should be jointly consis-
tent. Rule (sc3) says that if S is already consistent then

! But see [6] for a treatment of (individual, not social) information-
removal operators in which the removal of a piece of information can
directly lead to the introduction of new information.
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no modification is necessary. In addition to these three
properties, we shall also find it convenient to assume that,
amongst the sources, there is one distinguished source
who is completely reliable, in the sense that any informa-
tion provided by this source can safely be assumed to be
true and so should never be weakened. We fix source 0 to
be this completely reliable source, and reflect this by insist-
ing on the following rule for SC functions:

(sc4) £o(S) = So.

We will denote the set of sources minus 0 by Sources”.
We recognise that the existence of such a completely reli-
able source is not guaranteed in practice. However, sit-
uations where it is absent can be modelled by simply
taking Sy to be the “trivial” information, i.e., take
So = #". We now make the following definition.

Definition 1. Let f: % — 55" be a function.
Then f is a social contraction function (relative to
Sources) iff it satisfies (scl)—(sc4).

We now give a couple of simple examples of SC
functions.

Example 2. (i) A very simple example of an SC function
is the “trivial” SC function firiv which, given an input
information profile S, just returns S if this is consistent,
and which otherwise weakens all items of information
(except the completely reliable Sp) right out to ¥ .
Precisely, for each i € Sources,

f:_.l‘iV(S:) — {Sz

if i=0 or S is consistent
W otherwise.

According to this operator, all items of information (ex-
cept Sp) are effectively discarded as soon as input S is
inconsistent. This marks f™¥ down as quite a “wasteful”
operator.

(i1) A slightly more refined version of this is the SC
function for which f(§) again returns S if this is
consistent, and otherwise weakens each S; by just
adding Sy:

£(5) = S, if S is f:onsistent
S;USy otherwise.

It is easy to verify that both the above functions satisfy
(scl)—(sc4). Some more sophisticated examples of SC
functions will be presented in Section 4, after the ideas
of belief negotiation have been introduced.

A benefit of including (sc4) among our basic postu-
lates is that it gives us access to a list of individual, “local”
contraction functions — one for each i € Sources™. These
functions reveal, for each source i, how any item of infor-
mation from i/ would be weakened in the face of a single
second item which is considered completely reliable.

Definition 3. Let f be an SC function and Ilet
i € Sources”. We define the function of . BXRB— B
by, for all S, T e %, SSIT =f£,(U), where U € 5
is such that U; = S, Uy = T'and U; = # for all j & {0, i}.
We call &f 7’s individual contraction function (relative to

f).

(E.g., if n=3, then SOfT is the 3rd entry of the
4-tuple (7, % ,S,#").) Thus SSIT represents the re-
sult—according to f—of weakening information S from
source i so that it becomes consistent with 7. We have
the following proposition.

Proposition 4. Let f be an SC function and let
i € Sources”. Then ©F satisfies

(indl) S C S&fT

(ind2) (SefT)NT #0

(ind3) If SNT # 0 then SS'T = §

The properties (ind1)—(ind3) essentially correspond to
the well-known basic AGM postulates for contraction
(1) minus the Recovery postulate, which in our notation
would correspond to “S@fT CSuUT”. It will become
apparent in Section 4 that the & do not generally satisfy
this much debated (see [11, pp. 71-74]) property.

Recall that a principle motivating factor behind
defining SC functions was to use them as a stepping-
stone to defining merging operators. Under this view,
the result of the SC operation on S represents an inter-
mediate stage in the merging of the information items
in S, in which simple conjunction of the information
items can then be easily facilitated. From a given SC
function f, we define the merging operator Ay relative
to Sources using a kind of “generalised” Levi Identity.
We set, for each information profile S,

() = _ﬁf,-(S‘)

Our basic postulates for f immediately yield a corre-
spondmg set of basic properties for Ay (sc2) gives

A¢(S) # 0, while from (sc3) we get that S is consis-
tent implies 4;(S) = N;S;- Meanwhile (sc4) gives us
A (S) C 8y, 1.e., the result of the merging must always
imply the 1nf0rmat10n provided by source 0. In this re-
spect As resembles what is referred to by Konieczny
and Pino-Pérez as a merging operator with integrity con-
straints, or 1C merging operator for short [13], Sy here
taking the role of the integrity constraints in their frame-
work.? (For a more complicated treatment of integrity
constraints, see [3].)

2 At this point it is natural to ask whether it is possible to take the
converse direction and derive an SC function from a given IC merging
operator, just like, in belief revision, it is possible to derive a
contraction operator from a given revision operator via the Harper
Identity [8]. This question will be taken up in future work.
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2.1. More postulates: minimal change

The postulates (scl1)—(sc4) form our core set of postu-
lates for SC functions, but there is clearly scope for
other desirable properties to be put forward. One possi-
ble source for such further postulates is the idea of min-
imal change, i.e., the idea that the modification of S to
achieve consistency should be kept as “small” as possi-
ble.? Our condition (sc3) can already be said to be a mild
embodiment of this idea. In this subsection we look at a
couple of ways in which it can be taken further. The first
rule we consider is the following:

(sc5) For all i€ Sources™, if ;N ﬂ#ifj(:?') # 0 then
f,(S) - S,‘. A

The motivation behind this rule is the feeling that, for
each i€ Sources”, we should take fi(§) = §; whenever
possible. (Recall we already have fy(S) = S, by (sc4).)
Clearly if S; N (,f j(§) # () then it is possible. It is easy
to see that, in the presence of (scl) and (sc4), (sc5) im-
plies (sc3):

Proposition 5. Let f: 25U — $5US pe g function
which satisfies (scl), (sc¢4) and (sc5). Then f satisfies (sc3).

It is also quite easy to see that the trivial SC function
"V from Example 2 does not satisfy (sc5). Hence (sc5)
doesn’t hold in general for SC functions. However, even
though (sc5) may be appealing from a minimal change
point of view, its adoption can lead to counter-intuitive
results, as the following example shows.

Example 6. Suppose we have three sources, i.e., n =2.
Suppose source 1 provides the information S # #",
source 2 provides the complete opposite information S,
and the completely reliable source 0 provides only the
trivial information #°. We first claim that for any SC
function f relative to these sources which satisfies (sc5)
we have either f;(#,S,S) =S or f,(#",S,S) =S. To
see this, suppose f1(#7,S,S) # S. Then, by (sc5), we
must have SNfy(#,S,S)Nf(#,S,5)=0. Now
we know by (sc4) (or (scl)) that fo(#7,S,S) =W
Hence we have S Nf,(#,S,S) = 0, i.e., f2(#",S,S) CS.
Since we also have S C f2(#7,S,S) by (scl), we conclude
that f2(#7,S,S) = S which proves the claim. Given this,
we have for the corresponding merging operator that
either A¢(#",S,S) C S or 4¢(#",S,S) C S. Hence when
merging S and S we are forced to accept one or the
other. However one can easily imagine a situation where
we are unable to find any reason to prefer S to S or vice-
versa (e.g. sources 1 and 2 are equally reliable, equally

* The idea of minimal change is also a major consideration in several
other merging formalisms such as those presented in [2,3,10].

convinced their information is correct etc.). In this case
it would not seem irrational to withhold judgement on
whether S or S holds in the merging and to expect, say,
A¢(W°,S,8) = W'. Merging using an SC function which
satisfies (sc5) rules out this possibility.

This is reminiscent of the problems with so-called
maxichoice contraction and revision in the belief change
literature (see [11, pp. 76-77, 209-210]). To understand
why, it is helpful to change perspective slightly. For each
SC function f and each information profile S define the
set X¢(S) C Sources™ by

X¢(S) = {i € Sources™ | £:(S) = S,}.

In other words, given that Sources provides the infor-
mation S, X¢(S) is the set of sources (other than 0) who
do not weaken their information according to f. The
principle of minimal change suggests we should take
X¢(S) to be an inclusion-maximal subset of Sources”.
This is ensured by the following rule, which bears a
strong resemblance to the contraction postulate “Full-
ness” [11, p. 77] which, in turn, is a characteristic postu-
late of maxichoice contraction:

(sc5+) For all i€ Sources™, if S;N (ﬂjgxf<§)Sj) NSy #
() then i € X¢(S).

As the next proposition shows, in the presence of
(sc4), (sc5+) implies (sc5). However, in the additional
presence of the following strengthening of (scl), (sc5)
becomes equivalent to (sc5+):

(scl+) For all
f.(S)=7".

i € Sources, either f,—(§) =S, or

Proposition 7. Let f: B5 — B5W be aq function
which satisfies (sc4). Then, if f satisfies (sc5+), then f
satisfies (sc5). Furthermore, if f additionally satisfies
(scl+) then the converse holds.

The rule (scl+) says, in effect, that the information
from each source is either kept or discarded completely.*

Although Example 6 suggests (sc5) may be too strong
for SC functions, possible weakenings of it are at hand.
One, which brings the individual contraction functions
into the picture, is the following:

(sc6) For all i€ Sources®, if S; N[, ,£;(S)#0 then

—

f.(5) C S[@f§i~

4 Precisely such an assumption is made explicitly in [7]. Its adoption
here would effectively reduce social contraction to something akin to
belief base contraction [11].
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Note that S; &f S; is the result of weakening S; so that it
becomes consistent with S; and so, intuitively, contains
those worlds in S; which, at least from #’s viewpoint,
are considered the most plausible. Hence the consequent
of (sc6) essentially says that if f;(S) Aas to contain worlds
outside of §;, then it should contain only the most plau-
sible ones. Unfortunately this rule is rather too weak to
enforce minimal change, a fact which can be seen by
noting that the trivial SC function f™V validates it.
Rather, (sc6) represents some sort of “coherence’ condi-
tion on the results of performing social contraction on
different, but related information profiles (in this case
S and (S;,#,...,Si,...,#")). Another weakening of
(sc5) is the following:

(sc7) For all i € Sources™, if f;(S) # S; then there exists
some consistent 7 such that S C T Cf(S) and
S,' N ﬂj¢i7} = (Z)

This rule (which has a similar form to the postulate
“Relevance” from belief base contraction [11, p. 68])
can be explained as follows: If, for every consistent
information profile 7' lying “between” S and f(§), it
is possible to reduce 7; to S; without incurring incon-
sistency, then it seems safe to say that S; does not in
any way contribute to any inconsistency arising in S.
Hence (sc7) provides a way of saying that source i’s
information is weakened only if it somehow contrib-
utes to the inconsistency of the information profile S.
Although weaker than (sc5), (sc7) still manages to
be stronger than (sc3) (with the help once again of

(sc4)):

Proposition 8. Let f: 25U — 35S pe g function
which satisfies (sc4) and (scT). Then f satisfies (sc3).

Meanwhile, unlike (sc6), (sc7) still manages to be
strong enough to exclude f™, as the following example
shows.

Example 9. Assume  Sources = {0,1,2} and that
§=(S,S,S), where S € # is such that S # #". Then

—

since S is inconsistent we have fiiv(S) = S, 0.
Hence we see Sy =S # # = fiV(5). If £V satisfied
(sc7) we would deduce the existence of some consistent
Tez%2  such that SCTCf™S) and
S;NToNT;=0. Since both S>,=S5 and T, =S (this
latter holding since Sy C Ty C fi(S) and f(S) = S,
hence Ty =S,=3S), we deduce from S, NTyN T, =0
that 7, C S. But using this with the fact that 7,=S
gives us T is inconsistent—contradiction. Hence it
cannot be that " satisfies (sc7).

Our final postulate is motivated by the feeling that so-
cial contraction should be entirely expressible in terms
of the individual contraction functions.

(sc8) For all i € Sources”, f,(S) = S;of (ﬂ .#fj(S")).

v

This postulate can also be interpreted as saying that
the outcome f(S) of an operation of social contraction
represents a kind of equilibrium state. One in which each
source’s information S; is weakened just enough—
according to that source’s own individual contraction
function—to be consistent with the joint result of the
weakenings of all the other sources. Since, by Proposi-
tion 4, &f satisfies (ind3), it is easy to see that any SC
function satisfying (sc8) also satisfies (sc5). In fact, as
the following result confirms, only the “C” direction
of (sc8) is needed to prove (sc5).

Proposition 10. Letf : %7 — 2% be an SC func-
liog such that, for a{{ i € Sources™ and all S € ,@S"”ms,
f;(S) C S;ef (ﬂj#ifj(S)) Then f satisfies (sc5).

3. Extended belief negotiation models

So far we have examined social contraction from a
strictly postulational viewpoint. In the rest of the paper
we adopt another, more procedural, perspective. In [5]
the framework of belief negotiation models was intro-
duced as a framework for merging together information
from just two different sources. The idea was that the
pieces of information were weakened incrementally via
a negotiation-like process until “common ground” was
reached, i.e., until they became consistent with one an-
other. The purpose of this section is to extend this
framework so that it handles information coming from
n + 1 different sources (one of which is considered com-
pletely reliable) and show how each such extended belief
negotiation model ./ yields an SC function f'. Let us
begin with a rough description of the framework.’

Suppose the information profile S is provided by

Sources. The idea is that we determine f' () as follows.
We start off with the information profile =515 is

consistent then we just take f'(S) = 5 But if § is
inconsistent then we perform what may be thought of
as a “‘round of negotiation” which is just a contest be-
tween the sources. The losers of this contest (for there
may be several) must then “make some concessions’,
1.e., make some weakening of their position by admitting
more possibilities, while the others stay thgl same.
Thus we arrive at the new information profile S where

-

S C 5'. Nowif § is consistent then we set () = 5.

> We remark that this framework shares some similarities with the
abstract formalisation of negotiation found in [25]. For another recent
attempt at bringing ideas from belief revision and negotiation together
see [18]. A more detailed treatment of the subject of negotiation can be
found in [24].
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Otherwise the next round of negotiation takes place.
Once again the losers of this round make concessions,
and we keep going like this until §’ is consistent, at
which point we set £ (5) = 5. Now let us spell this
out in detail.

Let Q denote the set of all finite sequences of informa-

tion profiles. Given w = (§O,...,§m) € Q we will say

that w is increasing iff 5'] C §H1 for all j=0,1,...,
m — 1. We define the set of sequences ~ C Q by

=0 =m .. .
2={w=(5,...,5) € Q] w is increasing,

=m . . .
and S is inconsistent}.

=0

A sequence g = (S .. S ) S 2 represents a possible
stage in the unfinished (smce 5" is inconsistent) negotia-
tion | process starting with S'. Here, the information pro-
file S describes the current standpoints of the sources at
stage ¢. Given j<m, we let g; denote that sequence
c%lsistin_% of the first j+ 1 entries in o, ie., ¢, =
(S,...,8).

In the simple negotiation scenario described above
there were two ingredients in need of further specifica-
tion. Firstly, we need to know how a round of negotia-
tion is carried out. To begin with, we don’t worry about
the precise details. We simply assume the existence of a
function g : 2 — 25urees” which selects, at each negotia-
tion stage ¢, which parties should make concessions.
In other words g returns the losers of the negotiation
round at stage . Note that here we are building in
our assumption that source 0 is completely reliable
(and so never loses a round) by taking the codomain
of g to be 25" rather than 25°"“*. We make two
more mild restrictions on g. First, in order to avoid
deadlock we need to assume that at least one party must
weaken at each stage:

(g0a) g(o) # 0.

Second, suppose we reach a negotiation stage o =

—

(S ,...,§n1) such that S” = ¥ for some i€ Sources”.
Then obviously at this stage /s information cannot be
weakened any further. We restrict g so that it selects
only sources who still have “room to manoeuvre”.

(g0b) i€ g(o) 1mplles S 74 W
(where ¢ = (S ,...,S ).

The second missing ingredient is then to decide what
concessions the losers of a negotiation round should
make. Once again we initially abstract away from the
actual process used to determine this and assume only
that we are given, for each o = (5 , ... ,§"1) € X, a func-
tion V, : Sources™ — % with the interpretation that
V(i) represents the weakening of S7 that would be

made, given that i were chosen to weaken at stage o. Once
again to avoid deadlock, we require that this weakening
be strict, unless of course S} = %

(Y0a) ST CV (')
(YOb) v +(i) = 87 implies S = #".

The reader may notice that, even though we are
requiring that V¥ ,(i) be a strict weakening of S for all
i € Sources”, these weakenings will only actually be
“carried out” if i is a loser of the negotiation round at
stage o, i.e., i € g(g). Hence to avoid deadlock it is really
only necessary that V¥ ,(i) be a strict weakening of S}" for
some i € g(o). Our stronger requirement above comes
from our desire to keep our conditions on the V¥ (i) inde-
pendent from our conditions on g. Note also that here
we again identify information removal with information
weakening. We could, for a more general treatment,
weaken these properties on the V¥, although then, of
course, termination of the negotiation process would
no longer be guaranteed.

We can now make the following definition.

Definition 11. An extended belief negotiation model
(relative to Sources) is a pair A" = (g,{V¥s},cy) Where
g:2— 2%ourees™ 4o a function which satisfies (g0a) and
(g0b), and, for each o€ X, V¥, :Sourcest — # is a
function which satisfies (¥0a) and (V0Db).

From now on when we write “belief negotiation
model” we will mean an extended belief negotiation
model in the sense of the above definition.®

Example 12. (i) Perhaps the simplest example of a belief
negotiation model is A" = (g, {V¥,},_,) where we
take g(o) = Sources”™ and V¥, (i) = ¥ for all ¢ € ¥ and
i € Sources”.

(i1) Anothgr poss1b111ty for g would be to select at
stage o= (S ,... 5 ) € X all sources whose current
standpoint is not implied by the information of source 0,
i.e., take g(o) = {i € Sources™ | S} Z S""}. Another pos-
sibility for the ¥, would be to add all of S to S if this
produces a strict weakening, ootherw1se to just add all

worlds, ie., for all a_(S,...,S)EZ and i€
Sources™,

STusy if S € ST
va(z’):{'. oo E S

W otherwise.

We will give some more sophisticated examples of belief
negotiation models in Section 4.

© There are a couple of slight notational differences between this
paper and [5]. In the latter paper the function g picked up the actual
information items to be weakened rather than naming the sources from
which they came. Similarly the functions V¥, were defined directly on
the elements of S} rather than the set of sources.
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A belief negotiation model /" then uniquely deter-
mines, for any given information profile S provided by
Sources, the complete process of negotiation on S. This
process is returned by the function [ : %" — Q
given by

o -0 —k
[ S)=a=(S,...,8)
where (1) §0 = S, (ii) k is minimal such that §k is consis-
tent, and (iii)) for each 0 <j<k we have, for each
i € Sources,

S otherwise.

It should be clear that the restrictions we have placed
on g and the V¥, (along with our assumption that #" is
finite) guarantee the existence of the minimal k in (ii)
above. A belief negotiation model ./~ thus yields a func-
tion f' : ggSowrees = B via f' above, by simply
taking £ (S) = §". It is straightforward to check that
f' forms an SC function. Furthermore, in fact every
SC function can be said to arise in this way.

Theorem 13. Let f: 25" — %’S””’cfs be a function.
Then f is an SC function iff £ =1" for some belief
negotiation model N

The reader may like to verify that the function £
generated from the belief negotiation model 4™ from
Example 12(i) is in fact equal to the trivial SC function
" from Example 2(i), while the function f' generated
from the belief negotiation model .4~ from Example
12(ii) is equal to the SC function given in Example 2(ii).

In what follows we use 4, to denote the merging
operator defined from f*, and &;" to denote source i’s
individual contraction function &' relative to f'. A
point to note about these latter functions is that they de-
pend only on the functions ¥, i.e., we have the follow-
ing result.

Proposition 14. Let N = (g, {V,;},cy) and N =
(g {Vs},es) be two belief negotiation models which
differ only on their first component. Then, for each
i € Sources”, we have 9;’1/ = @;’W.

4. Instantiating the framework

A natural question to ask about the preceding frame-
work is: where do the functions g and V¥, of a belief
negotiation model come from? In this section we explore
some possibilities—one for the ¥, and two for g, leading
to two different concrete families of SC functions. To
help us do this we first need to make some extra de-
mands on the type of information provided by our

sources. We assume that each source i € Sources” pro-
vides not only a set S; € %4, but also some indication
of the plausibility of all the worlds in #". Such an indi-
cation is provided by a ranking.

Definition 15. A ranking is a function r: #" — N. We
extend such an r to a function on % by setting, for each
T € B, r(T) = min,c7r(w). Given S € 4 we say that r is
a ranking anchored on S iff r~'(0) = S.

Example 16. To give an example of a ranking, let’s
assume our background propositional language contains
just two propositional variables, leading #~ to contain
just four worlds which we denote here by a, b, ¢, d. Then
we can specify the ranking r in tabular form as follows:

0 1 2 3
r a,b c d

Here, the columns correspond to ranks, so in fact
we have r(a) =r(b) =0, r(c) =2 and r(d) = 3. We also
have r({c,d}) = min{r(c),r(d)} =2 and r({a,c,d}) = min
{r(a),r(c),r(d)} = 0. Meanwhile, since r'(0) = {a,b}, r
is anchored on {a,b}.

Such rankings, or variants thereof, are a popular tool
in knowledge representation. They can be traced back to
the work of [22] and indeed have already been employed
in the context of both merging (see e.g. [17,19]) and be-
lief revision (see e.g. [23]). A ranking provides, for each
w € ¥, a measure of the plausibility of w being the ac-
tual world. The lower r(w) is, the more plausible it is
considered to be. The plausibility (7) of a set T of
worlds is identified with that of the most plausible
worlds in 7. Rankings also allow us to talk about de-
grees of certainty or degrees of belief. Given S € %, we
can interpret r(S) as the degree of certainty that the
world is in S—the higher 7(S) is, i.e., the more implausi-
ble S is, the more certain it is that S contains the actual
world. We now assume that each time a source
i € Sources” provides the information S, he provides
along with it a ranking anchored on S;. Formally, we as-
sume we are given a ranking assignment for Sources.

Definition 17. A ranking assignment (relative to
Sources) is a function R which assigns, to each
i € Sources” and S € #, a ranking [R{S)] anchored on
S.

Note we assume source 0 does not provide a ranking,
just Sy as normal. We also make an assumption of com-
mensurability [19], i.e., that all sources use the same scale
when ranking the worlds according to plausibility.
Given this definition, we are now in a position to de-
scribe our first instantiation of the framework.
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4.1. First instantiation

How can we use a ranking assignment R to define
suitable functions g and V¥ ,? Turning first to g, our idea
is thi% the Lc’)nsers of the negotiation round at stage
g=(S,...,S ) should be those sources i who are the
least certain about their current standpoint S}, accord-
ing to the ranking [R;(S)] which they have provided
along with their initial information S. Recall that the
lower the number [R;(S)|(S7) is, the less certain i is
about S}". Thus, precisely, we define g; from R by setting

g,(0) = {i € Sources™ | " # W and [R,(S")](S7)
< [R;(S))](ST) for all j such that S # %7},

As for defining V¥, the method we choose is quite
simple. We assume that, for each ¢ = (§ ,...,§m) e,
if source i has to weaken at stage g, he does so by adding
to S those worlds not already in S which are the most
plausible according to the ranking i has provided with
his initial information S?. More precisely we set

V,(0) = 70 {we S| [R(SD](w)
< [R(SH)(W) for all W' € ST'}.

Given a ranking assignment R, we let 4" (R) denote the
belief negotiation model (g1,{V¥,},cx) With g; and the
V. derived from R as above. (It should be clear that
g1 and the V¥, satisfy the requisite properties from Def-

inition 11.) Let’s now see an example of A" (R) “in
action”.

Example 18. For this example we again assume our
background propositional language contains just two
propositional variables, with #" = {a, b,c,d}. We also
assume that Sources = {0,1,2}. Suppose source 1 gives
initial information {a}, source 2 gives {c¢} and com-
pletely reliable source 0 gives #~ (and so effectively plays
no role in the negotiation). Suppose our ranking
assignment R is such that [Ri({a})] and [Rx({c})] are
specified as follows (cf. Example 16):

0 2 3
[Ri({a})] a b ¢, d
[Ra({c})] ¢ a,d b

We construct the complete negotiation process
YRy {a},{c}) = o stage by stage, starting with
oo = ((#",{a},{c})). Since we have obvious disagree-
ment between sources 1 and 2, a first negotiation round
is required. Now we have [Ri({a})]({a}) =
1 <2=[Ry({c})]({c}), i.e., source 1 is less certain of
his current standpoint than source 2. Hence we have
gi1(ag) = {1}, i.e., 1 loses the round and so must weaken.
We  have V(1) = {a} U{w e {a} | [Ri({a})](w)

is minimal}, ie., 1 adds to {a} the most plausible
non-a worlds according to [R;({a})]. Since b is
the unique such world, this means V¥, (1) = {a,b} and
so we reach the next negotiation stage g = ((#,
{a},{c}), (7", {a,b},{c})). Since consistency has still
not been reached, another negotiation round is neces-
sary. This time we have [Ri({a})]({a,b})=2=
[R2({c})]({c}). Hence now both sources are equally
certain of their current standpoints. Hence gi(o)) =
{1,2}, i.e., both sources must weaken. We have V¥,
(1) = {a, b} U{w € {a,b} | [Ri({a})](w) is minimal} =
{a,b,c;d} =" and V,,(2) ={c}U{we {c}|[Ry({c})]
(w) is minimal} = {a,c,d}. Hence we reach the next
stage 02 = ((Wa {a}7 {C}>’ <W7 {a7 b}7 {C}>, <W7 W,
{a, ¢, d})). Since we have now reached consistency, we
end the process here with

O {ay {c}) = 02

From this we deduce £''® (" {a},{c}) = (#", ¥ {a,
¢,d}). For the corresponding merging operator we have

A Aah e)) = (600 {a) {e}) = {a.c.d).

As this example illustrates, the combined effect of our g,
and the V¥ is, roughly speaking, a process in which the
sources simultaneously add worlds rank by rank to their
initial information until consistency is reached. (See Sec-
tion A.3 in Appendix A for a precise elaboration of this
remark.) In particular, this results in the following
bepa&f)iour for the individual contraction functions
SHENS

Proposition 19. Let R be a ranking assignment and let
i € Sources™. Then, for all S, T € %A, S@;"" Ry —
{we 7 [ R(S)](w) < [R(S)I(T)}-

In other words, when faced with completely reliable
information 7, source i weakens his own information
S by simply admitting all worlds which are at least as
plausible as T according to the ranking he provides with
S. From this the following can be shown:

Proposition 20. Let R be a ranking assignment and let
i € Sources®. Then the function @;“ ® satisfies, in
addition to (ind1)—(ind3) from Proposition 4, the following
two properties:

@;_4'”1(1?)(];1 U Tz) C S@;ﬁ(R)Tl.
If (S@;‘, BT UT))NTy %0 then S&; "™,
c 5o B (T uTy).

(ind4)
(ind5)

This means that @'i,tr-l(R) belongs to the class of con-
traction operators known as severe withdrawal opera-
tors, which were studied in [21]. The rules (ind4) and
(ind5) essentially correspond to the postulates (=7a)
and (=8) given there. In fact (ind5) also corresponds
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to one of the two AGM supplementary contraction pos-
tulates [8]. Rule (ind4) is an “antitony’’ condition, which
says strengthening the completely reliable information
should result in 7 having to do more weakening.
Taken together, (ind4) and (ind5) say that weakening
to accommodate 7 should produce the same result as
weakening to accommodate 7 U T, provided the weak-
ening which accommodates 7'y U T, already accommo-
dates 7.

Turning to the merging operator yielded from such a
belief negotiation model 4" (R), we have the following
nice characterisation of 4. (g

Proposition 21. Let R be a ranking assignment. Then,
for all S e B%, we have Ay (v (S)={weS|
MaX;csomcest [Ri(Si)]| (W) is minimal}.

This “minimax” operator is a generalised version of
the merging operator with integrity constraints A™M®*
given in [13], which employs a particular family of rank-
ing assignments based on a notion of (symmetric) dis-
tance between propositional worlds. Similar operators
are also discussed in [17,19,20], and are shown to satisfy
several interesting properties.

How do the SC functions f1® fare with regard to
the minimal change postulates from Section 2.1?7 Well
quite badly as it turns out. Indeed they do not, in gen-
eral, satisfy even either of the weaker postulates (sc6)
and (sc7) mentioned there. The ranking assignment R
used in Example 18 provides a counter-example against
(sc6). To see this note that, in that example, we have

{a} Nt O {a}, {ch) N8O (97 {a}, {c})
:{a}ﬁ"ffﬂ{acd}#@.

Now if £1® satisfied (sc6) we would conclude

fﬁW%@ngwmw{@

But £ {a} {c}) =#" and {a}e;""{a} =
{a,b}. Hence '™ does not satisfy (sc6). That the
15 don’t validate (sc7) can be shown by the following
counter-example.

Example 22. As in Example 18 we again assume
W ={a,b,c,d}, Sources={0,1,2}, and that Sources
provide the information profile S = (#7, {a}, {c}). This
time, however, let the ranking assignment R be such that
[Ri({a})] and [Ry({c})] are specified as follows

0 1
[Ri({a})] a ¢ b, d
[Ra({c})] ¢ b a,d

Then it can be checked that f'1®(S) =
(9 {a,c},{b,c}). Clearly f;"®(S)#S,, hence if

1 ®) satisfied (sc7) we would deduce that there is some
consistent 7 such that Sc7cf® (§) and
S>NToNT;=0. Since SC T we must have Tg = ¥
and so, since S, = {c}, this latter amounts to saying
c¢ Ty. But it is straightforward to see that if
T C "1 ®(S) and ¢ ¢ Ty then T must be inconsistent.
Hence (sc7) cannot hold.

It would be interesting to find out if there are any
additional conditions we could place on g, or on the
¥, which could help to capture (sc7) for f'1®

Since, as we remarked at the end of Section 2.1, the
“equilibrium” property (sc8) implies (sc5) (and therefore
also (sc6) and (sc7)), this means that (sc8) also fails to
hold for '™, However, we can at least show that
the '™ do satisfy “one half” of (sc8).

Proposition 23. Let R be a ranking assignment. Then, for
all ie Sources and all S€ BN e have

60 250 (N80 6).

Summing up, it seems, interestingly, that, while
Ay, (r) might be quite well-behaved, there still seems to
be room for improvement regarding the behaviour of
1R

4.2. Second instantiation

Our second instantiation of the framework is about
taking a more orderly approach to the negotiation pro-
cess. The idea now is that the sources in Sources” each
take it in turn to weaken their information according
to some given fixed running order. Each source, during
his turn, repeatedly weakens his information until it be-
comes jointly consistent with the information of all the
sources who have taken their turn already. This
amounts to fixing £ (S) one element at a time, starting
with f'O'V(S’») = Sp. So, using < to denote a given strict
total order on Sources® and assuming i} < i < -+ < iy,
we first focus on 7; and repeatedly weaken S;, until it be-
comes consistent with Sy. The result of this weakening
we will take to be f;’l"'ﬂ(g). Of course it may be that
Si, NSy # 0 to begin with, in which case i; needn’t do
any weakening at all. Next we focus on i, and repeatedly
weaken S;, until it becomes consistent with f (S ) N So.
The result of this weakening we will take to be f, . (S)
Then it is the turn of i3, and so on through the rest of
the sources. For simplicity, and without loss of general-
ity, in what follows we shall take < to be just the usual
ordering < on the natural numbers, i.e., we assume
source 1 weakens first, followed by source 2, then source
3, and so on.

To fit this idea into our framework we need to define
suitable functions g and V. For the former we define
the function g, : 2 5 25””’“” by setting, for each nego-
tiation stage ¢ = (S - ),
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where

g:(0) = {i},

i € Sources™ is minimal such that ﬂS;” = 0.
J<i
For the ¥, we shall assume the weakenings are carried
out in exactly the same manner as before with the help
of a given ranking assignment R. Thus we define the be-
lief negotiation model A"5(R) = (g5, {Vs},cx) Where
now g is defined as above and the V¥ are defined from
R as in the previous subsection. (Again it is obvious that
g» satisfies the requisite properties from Definition 11.)
Let us give a worked example of a belief negotiation
model of this type.

Example 24. Suppose once more that #" = {a,b,c,d},
but this time that Sources = {0,1,2,3}. We suppose that
our sources provide the information profile
S = ({a,b,c},{d},{a,b,d},{c}). We will use the belief
negotiation model .A'3(R), where R is such that

[Ri({d})], [Ro({a,b,d})] and [Rs({c})] are given as
follows:

0 1 2 3
[Ri({d})] d a, b ¢
[Ro({a, b, d})] a, b, d c
[Rs({c})] c d a b

Let us construct the sequence f'2®)(S) = ¢ stage by

) : =0 I =0
stage, starting with gy = (S ) where S = S. Clearly S
is inconsistent, so a first negotiation round is necessary.
According to the definition of g,, determining who must
weaken at this initial negotiation stage is a matter of
going through each of the sources in Sources’ in the
order prescribed by < and selecting the first one for which
ﬂ/<z = (. Starting then with source 1, we immediately
see that ﬂj<1S° SoNSY = {a,b,c} N {d} = 0. Hence
source 1 is the loser of this negotiation round, i.c.,
gz(ao) = {1}, and so must make some weakening. Since
Vo, (1) ={d} U{w e {d} | [Ri({d})](w) is minimal} =
{a b d}lthrs leads us to the next stage o = (S S)
where S = ({a,b,c},{a,b,d},{a,b,d},{c}). Since con-
sistency has not yet been reached, a second negotiation
round is necessary. As a result of his weakening at the
previous stage, source 1’s current standpoint is no longer
in conflict with that of source 0, ie., we have
Se NSy = {a,b,c} N{a,b,d} # 0. Hence source 1 weak-
ens no further. We must consider source 2 next. But
N;<xS; =S,NS1 NSy ={a,b,c}N {a,b,d} N{a,b,d} #0
and so 2 need not weaken either. Since source 3
is the only source left, this means we must have
¢:(1) = {3} Now V., (3) = {c} U{we {e} | [Rs({e})](w)
is minimal} = {¢,d} which leads us to the next stage

0, =(5",5',5") where §* = ({a,b,¢}, {a,b,d}, {a,b,d},

{c,d}). Since we have still not reached consistency,
source 3 is required to do yet more weakening, i.e., we
have g>(,) = {3}. This time we have V,(3)=
{c,d}U{w € {c,d} | [R3({c})](w) is minimal} = {a,c,d}
leading to the next stage o3 = (§0,§1,§2, §3) where now

= ({a,b,c},{a,b,d}, {a,b,d},{a,c,d}). This time we
have reached consistency, so the process stops here with
f2®(S) =3 and £ (S) =5 = ({a,b,c},{a,b,d},
{a,b,d},{a,c,d}). For the corresponding merging oper-
ator we get 4, (S) = N_,S: = {a}.

Note that, by Proposition 14, the &;" ) are the same
as the &; 18 from the previous subsectron What can we
say this time about the SC functions f"'2®? First of all
we may show the following.

Proposition 25. Let R be a ranking assignment and let
i € Sources™. Then, for each information profile S, we
have

£20(8) = 59, <ﬂ £ (§)> :
j<i

In other words f;2®(5) is equal to the result—
according to 7’s individual contraction function relative
to f':% of weakenmg S; to be jointly consistent
with all the f; ( S) for whrch J <i. Using this together
with the fact that the e satrsfy the properties (ind4)
and (ind5) from Proposmon 20 then allows us to

prove:

Proposition 26. Let R be a ranking assignment. Then the
SC function %) satisfies (sc8).

Thus, imposing a strict “order of weakening’ on the
sources has forced our SC function to satisfy the equilib-
rium property (sc8) (and hence also (sc5), (sc6) and
(sc7)). Meanwhile we can characterise 4,z with the
help of the following piece of extra notation: We let
<jx denote the lexicographic ordering on N”| i.e., given
two tuples X,y € N" such that X= (x,...,x,) and
¥=0y,---,¥,), we have ¥ <,,, ¥ iff there exists j such that
(i) x;<y; and (ii) x; = y; for all i <j. (Clearly < is a
strict total order on N".) Then we have the following.

Proposition 27. Let R be a ranking assignment. Then,
using r; as an abbreviation for [ R(S))], we have

A_l"‘z(R)(S:) ={we S| (r(w),rn(w),...
minimal under <, }.

(W) is

Thus 4 ) (S) collects all the “best” worlds in Sy, in
the special sense where one world is considered ““better”
than another if it is assigned lower rank by source 1, or,
in case they are assigned the same rank by 1, it is
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assigned a lower rank by 2, or, in case they are also as-
signed the same rank by 2, it is assigned a lower rank by
3, or, etc. Thus the effect when merging is that the opin-
ion of source i is given precedence over that of i’ when-
ever i <i'. Such a lexicographic approach to merging
has been considered in [17] (see Section 4.5 there) where
the ordering < on the sources is interpreted as a given
ordering of reliability on the sources, i.e., the most reli-
able sources are given precedence.

5. Conclusion

We have made a start on the study of social contrac-
tion functions, which are applicable to the problem of
merging information from multiple sources. The inten-
tion is that social contraction is to merging what con-
traction is to belief revision. We have considered both
a postulational and a procedural approach, managing
in the process of the latter to extend the belief negotia-
tion framework of [5]. Our investigations are at an early
stage, and much still needs to be done. From the postu-
lational viewpoint we feel there are still many more pos-
tulates for social contraction waiting to be discovered
and evaluated. From the negotiation viewpoint we
looked in this paper at only two relatively simple possi-
ble ways of instantiating the basic negotiation frame-
work. We are presently looking at various other, more
complex, ways in which this can be done. One sugges-
tion, due to Thomas Meyer, relates to the ¥ -functions.
Instead of blindly adding «ll the most plausible worlds
not yet in source #’s current standpoint S as is done
in this paper, the function V¥ ,(i) should be more selective
and add only those which are already included in at least
one of the current standpoints S7' of the other sources at
stage o. (If none of these most plausible worlds appear
in any of the 7' then V¥ ,(i) should add all of them as be-
fore.) Refinements such as this could lead to more inter-
esting social contraction behaviour. Finally, we would
also like to explore more fully the relationship between
the merging operators derived from social contraction
and the integrity constraints merging operators of [13].
In particular, it would be interesting to find out whether
any of the additional minimal change SC postulates
from Section 2.1 induce corresponding postulates for
the derived merging operators.
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Appendix A. Proofs
A.1. Proofs from Section 2

Proof of Proposition 4. Let S, 7 € # and let U be the
information profile such that U; = S, Up = Tand U; = #~
for all j ¢ {0,i}. Then, we have f;(S S) = @fT (by deﬁm-
tion of &), fo(U) = T (by (sc4)) and f;(U ) W for all
j & 10,1} (by (scl)). Then to show (indl) we have
U; Cf;(U) by (scl), ie., S CSOIT as required. For
(ind2) we know f(U) is consistent by (sc2),

Nfe(T) # 0. But N, £:(0)=(SSIT)NT, which gives
the required conclusion. Finally for (ind3) suppose
SNT= nU; # 0. Using (sc3) we deduce that f(U) =
U,in particular Ui:fi((_]'), ie.,S=SOIT asrequired. O

Proof of Proposition 5. Suppose f satisfies (scl), (sc4)
and (sc5). To show (sc3), suppose S is consistent. We
must show f;(S) = S; for all i € Sources. If i = 0 then this
holds from (sc4). So suppose i € Sources*. Since S is
consistent we know ;N M;.;S; # (. But, using (scl),
we have (,,S; € () .1;(S S). Hence, from S;N M. #
0 we may deduce_ S; ﬁ ﬂ (S S) # 0. Applying (sc5) to
this then gives f,(S) = S; as required. [J

Proof of Proposition 7. For the first part, suppose f sat-
isfies (sc4) and (sc5+). To show (sc5), let i € Sources+ and
suppose f;(S )#S We must show S; N, ,f;(S S) = 0.
But from f,(S) #S; we know i & X¢(S). ThlS tells us
{j € Sources | j # i} D X¢(S )U{O} and so S;N().
f;(S) C 8N (Nyex, 7 (S))Nfo(S). By definition of
Xf(§) we know f; (S') S; for all j eXf( S), while also
£(S) = S, by (sc4) Hence Sinfi(S ) C S, N (Mjex,
S)NSy. From igX¢(S ) we have SiN (MNjex, SN
So=0 by (sc5+). Hence ;N f,(S S)=0 as requlred

For the second part, suppose f satisfies (sc4), (sc5)
and (scl+). Let i € Sources. Then, using (sc1+) and (sc4)
allows us to write ﬂ#l.fj(g) = (Mjexy(5)57) N So. Hence
we see the antecedents of (sc5) and (sc5+) are equivalent.
Since the consequents of the two rules are clearly also
equivalent, the result follows. [

Proof of Proposition 8. To show (sc3) suppose S is con-
sistent. We must show f;(S) = S; for all i € Sources. The
case (=0 is handled by (sc4), so let i € Sources”.
Suppose for contradiction that f;(S) # S;. Then (sc7)
tells us there exists some consistent T such that
SCTCf(S) and S; N()j»T;=0. But from SCT we
get ()2S; € ()j»iT), and so from S;N (). 7;=0 we
get S; N ﬂﬁé,S 0,1i.e., S is 1nc0n51stentﬂsontradlct10n
Hence f; (S) = §; as required. [

Proof of Proposition 10. Let f be an SC function. Let
i € Sources™ and suppose S; N[, .f;(S S)# 0. To show
(sc5) we must show f,(S) =S;. But since ol satisfies
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(ind3) by Proposition 4 we have S;©f(, 4 (5)) S;.
Hence the assumption that f;(S) C S; ef(ﬂ .£7(S)) yields
f; (S) C §;. We obtain equality by (scl). [

A.2. Proofs from Section 3

Proof of Theorem 13. First we show that f is an SC
function for any belief negotiation model ./". We need
to show that f' satisfies (scl) (sc4). For (scl) let

S € #5rees and suppose. [ ( S) = (SO, .. k) We must
show § C £'(S), ie., g C 5 But, for each 0<j<k,

we have § C §/+l (this is ensured by (V¥0a)) and so,
since the “C” relation between information profiles is
clearly transitive, we get the required conclusmn Since
we always have §" is consistent this means f* (S) is
cons1stent and so (sc2) also holds. For (scS) we have that
if S is consistent then we must have £(S) = (S) and so
£ (S) S as required. Finally for (sc4), since 0 & g(o)
for all g, we clearly have S) = S = Sy for all 0 <j < k.
In particular we have S’é = So, ie., f0(§) =S8y as
required. Hence ' is indeed an SC function.

Now we show that, given an SC function f, there
exists a belief negotiation model A" = (g, {V¥,},.5) such
that f = f'. We define the functions g and V¥, from f in
turn and then show that f = .

Defining g. Given f, we define the funct1on
g:2— pSources™ by setting, for each ¢ = ( ,...,S )eZ,

g(0) = {i € Sources™ | ST # f,(§m)}

We need to check that g so defined satisfies the con-
ditions (g0a) and (g0Ob). To show (g0a) is satisfied, i.e.,
that g(o) # 0, note first that S" is inconsistent by defini-
tion of the set ~. Now suppose for contradiction that
g(0)=0. Then we must have S§" =f,(5") for all
i € Sources™. Since we dddltlol’ldlly have Sy =f£o(5")

by (sc4) thls means S = f( ) for all i € Sources ie.,

5" =1(S"). Hence, since f(S (§") is consistent by (sc2), this
gives us that §" is consistent—contradiction. Hence
g(o) # 0 as required. Turning to (g0b), we must show
that i € g(o) implies S # #". But if S =" then, by
(scl), we must have S —f(S ) and so i€ g(o) as
required. o .

Defining the V.. For each 6 =(S,...,5 )€ X we
define the function V, : Sources™ — % by setting, for
each i € Sources”,

v.0) {f,.(§ ) if " #£,(5")

/a otherwise.

We now need to check that the ¥ so defined satisfy the
properties (¥0a) and (¥0b). That (¥0a) is satisfied, i.e.,
S C V¥,(i), follows almost immediately from (scl). For
(YO0b) we must show that V¥,(i) = S implies S = #".
So suppose V¥,(i) =S". Then obviously it cannot be

the case that both ¥, (i) = f,(S") and S" o £,(S ™). This
rules out the first clause in the deﬁmtlon of ¥ (i) and
so it must be that we are 1n the second clause, i.e., that
V.(i) = (and " = f,(§ ™). Hence, since we assumed
V. (i) =S, we have S =¥ as required.

Given A~ defined above, it remains to show that
f(S) = £ (S) for all information profiles S. We will show
this by first constructing, for a given S, the sequence
f "'V(g) representing the complete process of negotiation
on S. For the case when S is consistent we clearly have
F(S) = (S) and so ' (S) = S. Since in this case we
know also f(S) =S by (sc3) we get f(S)=f"(S) as
required. So suppose now that S is inconsistent. In this
case, we claim that /' (§) = (5,£(5)). To see this, let
gy = (é‘:) & 2 denote the initial negotiation stage and let
a1 = (5,5 ) denote the stage which follows the first
negotiation round. We show that S = f(S). First, since
0 ¢ g(ao) as always, we have S} = Sy = (by (sc4)) £o(S).
So now let i € Sources™. If i € g(o,) then i must weaken
and so S! = V¥, (i). By definition of g, we have S; # 1:(S S)
and so, by deﬁnmon of ¥,, we have S} =f; (S). 1f
i¢g(og) then i does not weaken, i.e., S1 S;. By
definition of g we have S;=f; (§) Hence again
S! =1,(S) as required. Hence S = f(S S). Since f(S) is
consistent by (sc2), the negotiation process ends here with
FY(S) = (S,£(S)) and so £ (S) = £(5) as required. [

Proof of Proposmon 14. We must show that
Se'T =585 'T for all S, T € . So, given S and
T, let Ue %SO“"‘* be such that U;= S, Uo— T and
U—Wforjg_i{Oz} Then we have S©;' T =f" (U )

and So'' T =1 "(U). Hence we must ‘show
£°(0) = f;""/(lq]). We will show that in fact
0 = I ’ (17)_'0 which clearly suffices. So_ let
ol =) =(U,...0) and " =7"(0)=

Vo, ... ) V ). We will first prove by induction on m that
o) = for all 0 < m < min{k, Z} For the case m =0

0 -0 p
wehaveU —0=7 and so g :(U)z(V)—a'

as required. Now suppose 0 <m < min{k,/} and that
ol :0,;1/13 1e that U —V for all s<m—1. We

must show o;' =", ie., that additionally U =7

Since U C Umi = Vm we know U ' =yl =y"
forj ¢ {0,7}. Hence, smce g and g’ satisfy (gOb) this
means that at stages ¢;' | and o', respectlvely, neither
g nor g’ selects any source j # i. Since g and g’ satisfy
(g0a), this means we must have g(o) )=
g(al")) ={i}. Hence, for j¢ {0,i} we have again
Ul =vi=, while U=V, 1(i) =V o @)=V
Meanwhile Ug=Vg=T, hence we have that
Uy =7 for all je€ Sourcev ie, U" = V" as required.
ThlS completes the inductive step, and so we have shown
that ;' = a”l for all 0 < m < min{k,/}. Since k, respec-

tively, /, are minimal such that l7k, respectively 17[ are
consistent, we must have k =/. Hence we have ¢' =
o', ie., f(U)=f""(U). This completes the proof. [
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A.3. Proofs from Section 4.1

For the remaining proofs in the paper it is useful first
to introduce some extra notation. For each ranking
assignment R and each x € N we define a function
hR,x . gSourcex _ e%Sources by Setting, fOf each § c %Sources’

hll_w(g) _ {;W € W | [Ri(S)](w) < x} ii i i g

In other words we have th(§) = Sy while, for each

i € Sources”, the entry h’”( ) collects all those worlds
which are awarded a ranking of at most x by the ranking
i provides with S;. Note that the fact that each ranking
[R{S)] is anchored on S; means that we have
h*’(S) = S. For the belief negotiation model .4\ (R)
we can neatly describe the negotiation process in terms
of these functions. First we give the following lemma,
which describes the transition from one negotiation
stage to the next.

Lemma 28. Let R be a ranking assignment and S
be an information profile. Suppose [ R)(S)=¢=
(§0,...,§k). Then, for each m 0,1,....k—1, if
5" = h**(S) for some X then 5 = = h*(S) where y is
minimal such that §" C W*¥(S).

Proof. Assume m is such that § = h**(5) for some x.
For this proof let us abbreviate i’s given rankmg [R(S)]
by just r;, for each i€ Sources”. - Then let
Y = Miegpees 17:(ST)}. First we claim 5 = hR Y (S).
To show this we need to show that s = Wt (S) for
all ie Sources (clearly we already have Syl =

= hg’y (S)). There are two cases we need to check
(a) i € gi(0,,) and (b) i & gi(0,). If i€ g1(0s), equiva-
lently (by definition of g;) r,(ﬁ) )/, then we have
S =V, (i))=S8'U{weS]|r(w)is  minimal} =
ST U{w e S| r(w) =y'}. By the minimality of )’ we
know there is nowe W such that r(w) < y’. Hence we
may just as well write

SPH =8P U w e ST | rlw) <)
Since $” = h**(5) we may re-write this as
ST =dwe W | rnw) <xyu{we ¥ |x <r(w) <y}

={we W |r(w) <y} =h(S) as required.

For the case i € g(a,,), equivalently r(ST) > ', we have
st = §m. Using ri(S7) > )/ together with the minimal-

ity of y’ we know there is no w € S’” such that r{w) < y'.
Hence we may again just as well write

S'.”Jr1 =S"u{we S—”’ [ ri(w) <)}
and so we again get S} = h*' (S). Hence we have shown

5 = n*(S). Our result will be proved if we can fur-
thermore show that )’ is minimal such that 5" c

h*'(S). But y = MiN;cgoureest 17 (S’")} implies that, for
all i € Sources™, there is no w € S” such that r(w) <y’
Hence, for all i € Sources™ and all y” <y’ we have

S"=8"U{we S| r(w) <y} =h(S)

and so § =h*"(S) for all y' < y. This proves the
result. [

Given this lemma, we c_an now bette'rk descr_ibe the
negotiation process f1R(S) = (S ,...,S5 ) on S under

"1 (R). The process begins with § =5 =nt 9(S). If this
is con51stent then the process ends, 0therw1se we carry

. By Lemma 28 we know that § — o (S) where

x; is minimal such that h*°(§) c h® (§). If this is con-
sistent then we stop, otherwise we carry on. Continuing
the process, we see that /'1®)(S) will take form
f,,t"’l(R)(_') _ (hRixo (Sﬁ) hR,xl (S’) hRixk (Sv’))
where (i) xo =0, (i1) for each 0 <, x;4; is minimal such
that b (S) c C b %+ (S) and (iii) k is minimal such that
h**(S) is consistent. Thus we end up with £'1%(5) =
h* (). Now, it should be clear that for all x < x it must
be the case that h**(S) = h®*(5) for some j < k. Hence
we may state the following corollary to Lemma 28.

Corgllary 29. Let R be a mnkmg assignment. Then, for
all S € B5v | we have 18 (§) = W4 (S), where z is
minimal such that h**(S) is consistent.

We will now make use of this characterisation of
f'1® in proving the rest of our results. Before we start
we give one more lemma, which as well as being used in
proving the next proposition will also be used in the
proof of Proposition 25.

Lemma 30. Let R be a ranking assignment, Se ggSources
i € Sources™ and T € #. Let z be minimal such that
b (S) N T # 0. Then z = [R(S)] (T).

Proof. Recall  that  [RAS)|(T) = min,,c7ARAS)](w).
Clearly we have that there is some w & T such that
[RAS)I(w) = [R{SHI(T), hence we know hf’[R"(S')]m (§) N
T # (), while also we have [R{S)I(T) < [R{(S)](w) for
all we T. Hence, for all I<[R(S)](T), there is no
we T such that [R(S)I(w) <[ ie, h(S)NT =0.
Hence [RAS;)](T) has the required minimality. [

Proof of Proposition 19. Let U € % be such that
Ui=S5, UO—T and U; =" for all j¢{0,i}. Then
S@ R)T f/ (R)(U). By Corollary 29 we have
ST = hR “(U) where z is minimal such that
hRZ(U) is consistent. Since h%*(U) =T, while clearly
hRZ( )= for all j¢ {0,i}, this amounts to saying
that = is minimal such that W (U) N T # 0. By Lemma
30 we know z=[R(S)(T). Hence So;" B

b () = {w e 7| [Ri(S)](w) < [R(S))(T)}, Whlch

completes the proof. [
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Proof of Proposition 20. To show (ind4) suppose
we S@',-’""-I(R)(Tl UT,). Then, by Proposition 19,
[R(DIw) < [R(S)(T, U T»). Now, for any ranking r
and any 4, B € 4 such that 4 C B it is easy to show that
r(B) < r(A). In particular we have [R{S)|(T1 U T3) <
[R{(S)I(T1) and so we get [R(S)](w) < [R; (S)](T 1) Using
Proposition 19 again thlS glves us w e S@ 1) T and
so we have shown S&;"! (T uT,) C e BT, as
required. )

For (ind5) first mnote that if (Seij)
(T1UT))N Ty # 0 then there must exist some w' € Ty
such  that [R(S](W') < [R{(S)(T1 U T>). Hence
[R($))(T1) = miner, [Ri(S))(w) < [Ri(S)](T1 UT2). Thus,
makmg use of Proposition 19, we have that
wese, 'O, implies [RAS)](w) < [RAS)I(T1) implies
[R(S]W) S [R(SNT1UT) 1rnphes weSo;
(T\UT,). Hence we get So; '™, cse/"® (T, UTZ)
as required. [

For the proof of Proposition 21 we will make use of
the following lemma.

Lemma 31. Let R be a ranking assignment and let x € N.
Then, for each S & #%°“, we have () W' (S) =
{W € So | MaXcsourcest [Rl(Sl)](W) < x}

Proof. For this proof let r(w) abbreviate
MaX,csoucest [Ri(Si)](w) for each we€ #". Given any
we W we have that we (h*(S) iff we S, (since
h%*(S) = S,) and [R{(S)](w) < x for all i € Sources™ (by
definition of hR"( ) for i € Sources™). Since saying that
[RA(S)I(w) < x for all i € Sources™ is the same as saying
r(w) < x, the result follows. [

Notice that, as a corollary of this result, for each
we Sy and letting r(w) abbreviate max;c g, ces
[R:(S)](w), we always have w e (hf""(S). This fact
will be used in the next proof.

+

Proof of Proposition 21. Let S € %" Then, by
definition, 4 4 ( ) ﬂlf, (§) By Corollary 29
we know that f ‘ (®)(S) = h**(S) where z is minimal
such that h®*(S) is consistent. Hence Ay
(S) = N,h**(S). Applying Lemma 31, then, and again
letting r(w) abbreviate max;cg,,cest [Ri(S:)](w) for each
we W, we get that A, (g (S) = {weSo|riw) <z}
Hence we need to show

{weSy|riw) <z} ={weS|r(w) is minimal}.

To show this we need to show that, for all we S,
r(w) <z iff r(w) <r(w') for all w' €S, So suppose
w € Sy and that r(w) < z. We claim that, for all w’ €
So, we have z < r(w'). To see this, suppose w’ € S, was
such that r(w’) <z. By the remark followmg Lemma
31 we have that w € ﬂhR”” (S) and so
") (S) # 0. But this contradicts the minimality of

z, and so we must have z <r(w’) for all w' €S, as
claimed. Given this we can deduce from r(w) < z that
r(w) < r(w') for all w' € Sy as required. For the converse
direction, let w € Sy be such that r(w) < r(w’) for all
w' € S,. Since h**(S) is consistent, we know that there
exists some wy € ﬂihf’z(§), i.e., that there exists some
wo € Sp such that r(wg) < z. Hence in particular we
get r(w) < r(wp) <z as required. This completes the
proof. [

Proof of Proposition 23. Let R be a ranking assignment,
S € #% and i € Sources*. For this proof, we will use
r; to denote the ranking [R,(S;)]. By Corollary 29 we
know that £'1®(S) = h**(S) where z is minimal such
that h®*(S) is consistent. We first claim that

r,(ﬂj #f}"”‘(R)(S')) <z. To see this, note that, since

h®*(S) is consistent, we know there exists some

w' € #" such that w' € hRZ( ). In particular we have
w € hf*(S) and so r(w') <z. Meanwhile, since also

we mj;éihfz(s) _ ﬂ#if;yt'ﬁl(m (§), we have r[<ﬂ#if;"ﬁl(m

—

(S)) < r:(w). Putting these two inequalities together
gives us r; (ﬂ ; 7élf}f"ﬁ‘(m (S )) < z as claimed. Now to prove
the proposition, let we %  be such that we

-

S0 1" (ﬂmf (S)) Then, by Proposition 19,
ri(w) <r (ﬂ/ o Y1iR) (S)). Hence r{w) < z, equivalently

weth( )=1; F(R>(§). Thus we have

S shown
s, @ ( Hg, 1(R) (S«’)) C fi""'l(R)

(S) as required. O

A.4. Proofs from Section 4.2

Prooof of Proposition 25. Suppose fR(s ) = o=
(S°,...,S) and let i € Sources”. In this proof we will
denote i’s rankmg [RAS;)] by just r;. Let / be minimal
such that (,_;S; l'# 0. In other words, g, is that stage in
the negotiation where it is /’s turn to weaken. Note that i
has not done any weakening up to this stage, i.e.,
S! = 8% = §;. This is because if i had already weakened,
i.e., we had g-(g,) = {i} for some t <[, then by definition
of g, this would mean ﬂ i " # (—contradicting the
minimality of /. Also, let /" be minimal such that
ﬂj<,S§/ # (. Then between stages ¢, and gy, source i—
and only source i—is required to weaken, i.e., we have
gx(oy) = {i} for all [ < s < !'. We now make use again of
the h-notation which we introduced in the last section.
First we need the following lemma.

Lemma 32. For each [ <s <1, if 8 = h®*(S) for some
x, then ' =h(S), where y is minimal such that
h’”(S) C R ().
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Proof. Let/< s <! and suppose ¢ = h**(S) for some x.
Since g»(o,) = {i} we have SS“ =V, (8=S U
{w € S} | ri(w) is minimal}. Let y=min, esiri(w). We
claim then that 531 = hi(S). To see this note that, using
the fact that §} = th(S) we may re-express S as

S ={wln(w) <xpu{w|r(w) =y}
= {w| r(w) < y} using the minimality of y

= h?(S) as claimed.

It remains to show that y is in fact minimal such that
h**(S) c h*(S). But, by the minimality of y, for each
x<y' < y we know there is no weS; such that
,(w) <y. Hence, for all x<y <y we have
hR‘(S) h”'(S) and so y is indeed minimal such that
Wt (S) ¢ hR}(S) O

Using this lemma, we can now see that, for each
I<s< /', we have S} = hf"‘*‘(g) where (i) x;=0 (since
S = §;) and (ii) for / < s <7, x,4y is minimal such that
hR %(S)  h*1(8). In particular we have ' = h"™" (§).
Now since we assumed [ j<,Sﬁl #0, we know
ﬂKlSﬁ Ah (S ) # 0. We now claim that, for all t < x;
we have (V,_.S] Nh*(S) = 0. This follows since if
t<xy then we must have h®(S) = hf*(S) for some
I<s<l, ie., h*(5) =S for some /<s</, and by
the minimahty of I' we know M., S5 = 0. Since Sl =y

N J
for all J € Sources such that j# i this glves

ﬂ] i j Nh*(S) = 0 as claimed. Hence we have shown

in fact that

S = 1)

where z is minimal such that ), <,Sj N hRZ( ) # 0. Now,

Ey Lemma 30, we know that z = (ﬂm /). Hence we
ave

st = {w eW | ri(w) <r (ﬂSjll> }
J<i

Now, by definition of g, we know that, after stage o,
neither source 7 nor any of the sources ] <i do any fur-
ther weakening. This is because ﬂ/<l . # 0 and so, for
all I <s and all sources ;' < i we w111 have e (<87 # 0

(since g C §’). Hence we know f (S) Sk S’/
for all j < i. Hence we get

S = 5! = {w W n(w) <7, (ﬂ Sﬁ’) }
()]
(R) <ﬂ f},l,/é(R) (§)>

This last step follows from Propositions 19 and 14. This
completes the proof of Proposition 25. [

—{we%rl

Proof of Proposition 26. We need to show that, for all
i€ Sources”,

fi/iﬂz(R) (S S @ Ao ( (ﬂf A2 (R >

J#i
Letting X = (_f;>* (§) and Y =(,_f""(S) this

j<i®Jj l<] J

means we must show f;" 2% (8) = 5,6,"*® (x N Y). Prop-
osition 25 tells us f;"*"(5) = 5,0, "x = S @m w0
Xuxny)), hence it suffices to show S,5;" (X U
(X NY))=586""*®XnNY). Using the fact that &;"
satisfies (ind4) and (ind5) from Proposition 20 w_e know
that this equality holds, provided that (S;o; 2" x)N
(XNY)#0. But S@“RX f,‘z( '(§) by Proposition
25, while X NY = ﬂﬁé, f"2®)(5). Hence

(se " nwny = ) 1

JjE€Sources

NXxXNY)

and this is non-empty by (sc2), as required. [J

Proof of Proposition 27. To improve readability, let us
denote f'2® by just f in this proof. Given tuples
%,y e N", we will write ¥<,,y whenever either X<,y
orx=7y.

“C7 Let we A pp(S), ie, we Nfi(S). We must
show (i) we Sy, and (ii) for all w' €S, we have
W), s FaW)) < sex(r1 (W), - . -, (W) Since w e £o(S) =
So we know (i) holds. To show (ii) let w' € S,. If
rwh,...,r,(w") = (r(w),...,r,(w)) then we are done,
so suppose instead (r;(w'),..., r,(W")) # (ri(w),...,r,(w))
and let j be minimal such that r(w’) # r(w). We must
show r(w) < r{w').But since weﬂif,-(s") we have we
f,(§) and so, by Propositions 25 and 19, we have

i) <75 (M f1(S) ) equivalently r,(w) < ri(w”) for all
w Gﬂk<jfk(§). Hence if we could show w/ Gﬂk<jfk(§)
then we would get r(w)<r(w’) and so, since
r{w') # r{w), this would give the required r/(w) < r,(w’).
So let k <j. For k =0 we already know w' € Sy =f(S).
So assume k # 0. Then by Propositions 25 and 19, to
show w' e f;(S) we need to show r(wW) <7y <ﬂ‘.<kfs(§)).
But, by the minimality of j we have ri(w’) = ri(w) and,
since wef,(S), we have ri(w)<ry (ﬂs<kfs(§)). This
gives the required conclusion. Hence w' €, <jfk(§) as

required.
“ C 7 Let

(ri(w), ...,

we Sy be such that
W) < jex(ri(W), ..., r,(w")) for all w' € S,.
We must show we ﬂif,-(g’). We already have
w e f(S) = So. We will now show by induction on k
that w € fk(§) foreachk=1,...,n. For k=1 we need to
show (by Propositions 25 and 19) that ri(w) < r1(w’) for
all w' € Sy. But this follows already from the fact that
r1w), ..., 1, (W) < s (W), ..., (w")) for all w'e
So.Now let 1 <k <n and suppose for induction that
w € (,,fs(S). By Propositions 25 and 19 we need to
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show ri(w) < re(w') for all w e (), f(S). So let
w € Noifs(S).  Since w €fy(S) =Sy, we know
W), ..., 1, (W) < g (MOW),...,r(W")). Hence our
result will be proved if r{(w) = ryw’) for all s < k. But,

)

given s < k, we have w' € {,(S) and so ryw’) < r(w") for
all w” € ﬂt<sf,(§). Since, using induction, w € ﬂ,<sf[(§),
this means in particular that r¢w’) <rdw). By a
symmetric argument it can be shown that ry(w) < r(w’),
hence r(w) = r(w') as required. Hence we have shown
we ﬂkfk(g). This completes the inductive step and so
we ﬂifi(g) as required. O
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