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Abstract

We present a framework for non-prioritised belief revision — i.e., belief
revision in which newly acquired information is not always fully accepted
— in which the result of revision is arrived at via a kind of negotiation
between old information and new. We show how both ordinary partial
meet revision and Fermé and Hansson’s selective revision can be captured
in this framework, and also how it supports the definition of contraction
operators which do not necessarily satisfy the basic AGM contraction
postulate of (Success).

1 Introduction

Belief revision has been an active area of research, both in philosophy and
computer science, since the early 1980’s. The most popular basic framework
within which it is studied is the one laid down by Alchourŕon, Gärdenfors and
Makinson (AGM) in [1]. One of the basic assumptions of that framework is that
newly acquired information should always be accepted after revision and that
any resulting inconsistency should be repaired by deleting some of the previous
beliefs. In other words the new information is given “priority” over the old. This
paper is inspired by recent developments in the area of so-called non-prioritised
belief revision, i.e., belief revision in which newly acquired information is not
always fully accepted (see [9] for a recent survey).

The basic problem of belief revision is the following: How should an agent
change his beliefs — represented by a consistent, deductively closed set of sen-
tences (belief set) K — in response to the new information that some consistent
sentence φ is true, in such a way that the resulting set of beliefs is again consis-
tent and deductively closed?1 If φ is consistent with K then we can simply add

1We are using the AGM representation of belief states and belief inputs, with the simpli-



φ to K and then close under logical consequence, but what if φ is inconsistent
with K? In this case we can imagine this inconsistency as a “gap” between K
on one side and φ on the other. The problem of revision may then be thought
of as the problem of how to bridge this gap, i.e., reach consistency. In partial
meet revision, i.e., the revision operation of AGM theory, the bridge is con-
structed entirely from the side of K, in that enough of K is removed so that
it becomes possible to consistently add φ (cf. the Levi Identity). This ensures
φ is always fully accepted in the new belief set. In Fermé and Hansson’s se-
lective revision [3], which itself generalises several approaches to non-prioritised
revision (see [9]), a part of the bridge is first constructed from the side of φ,
in that φ is transformed into some logically weaker sentence φ′ (the “selected
part” of φ, which is allowed to be logically equivalent to φ itself), and then the
bridge is completed from the side of K, in that enough of K is removed so that
φ′ can be consistently added. In this type of revision φ′, but possibly not φ,
will be accepted in the new belief set. The basic idea behind this paper is to
push this bridge-building analogy further and consider an even more general
model of revision which allows for the bridge to be constructed from both sides
simultaneously.

To help us do this we first introduce an abstract framework for merging
together pieces of information coming from two different sources. In this frame-
work the merging itself can be seen as a kind of negotiation between the sources
which resolves any inconsistency. The main construct here is that of a belief
negotiation model. A given belief negotiation model, relative to the two in-
formation sources s and t, uniquely determines the course of any negotiation
between s and t and thus uniquely determines the result of merging any two
pieces of information provided by s and t respectively. By interpreting s as the
belief-holding agent and t as an information source external to the agent, this
framework becomes a framework for investigating non-prioritised revision which,
as we will see, provides both a useful starting point from which different ideas
on non-prioritised revision can be worked out, and an interesting perspective on
the process of belief change itself.

The plan of this paper is as follows. In Section 2 we introduce our general
merging framework and define belief negotiation models. Then in Section 3 we
apply this framework to belief change, showing how a given belief negotiation
model N not only gives rise to a non-prioritised revision operator �N , but also
yields an operator �N of the other main type of belief-change operator studied
in the AGM framework, i.e.,contraction. Given a belief negotiation model N
we will call the pair 〈�N ,�N 〉 a basic revision-contraction pair. We give an
axiomatic characterisation of such pairs in Section 3, where we also look at
a few of their other properties, including how �N and �N interrelate. As
we will see, �N satisfies all the so-called basic AGM postulates for revision
except, possibly, (Success), while �N satisfies all the basic AGM postulates
for contraction except, possibly, (Success) and (Recovery). Then in Section 4

fying assumptions that the agent’s belief set is consistent, that he is never directed to revise
his belief set by an inconsistent sentence, and, later, that he is never directed to contract his
belief set by a tautology.



we add three restrictions in turn to belief negotiation models which lead to
three progressively smaller classes of basic revision-contraction pairs. We give
axiomatic characterisations for each of the three classes. The revision operators
�N of the smallest class correspond to partial meet revision operators while
those of the middle class correspond to one particular class of the selective
revision operators studied in [3]. The ones of the largest class, which satisfy a
very weak form of the revision postulate (Success), have not appeared elsewhere.
In Section 5 we briefly mention some related work from the literature on merging
before concluding and giving a couple of ideas for further work in Section 6.

Before we get started let us fix our notation. We work throughout in a
propositional language L generated from finitely many, but at least two,2 propo-
sitional variables. Cn denotes the classical logical consequence operator on L.
The (finite) set of all propositional worlds is denoted by W and the set of all
non-empty subsets of W is denoted by B. For any set I ⊆ L, [I] denotes the set
of worlds in which every sentence in I is true. If [I] 6= ∅ then I is consistent,
otherwise I is inconsistent. For φ ∈ L we write [φ] rather than [{φ}] and write
“φ is consistent” rather than “{φ} is consistent” etc. If ¬φ is inconsistent, i.e.,
[φ] =W, then φ is a tautology. A belief set is any set of sentences K ⊆ L which
is both consistent and deductively closed, i.e., K = Cn(K). The set of all belief
sets we denote by K. We denote the set of all consistent sentences by L∗ and the
set of all non-tautologous sentences by L∗. (So φ ∈ L∗ iff ¬φ ∈ L∗.) Thus for us
a revision operator will be a function with domain K × L∗ while a contraction
operator will be a function with domain K×L∗. Given any I ∪ {φ} ⊆ L, I + φ
denotes Cn(I ∪ {φ}) while, for any set of worlds S ⊆ W, Th(S) denotes the set
of sentences true in every world in S. Finally, for any set X, |X| denotes the
cardinality of X.

2 Belief negotiation models

We begin by describing our basic merging framework.3 Suppose we have two
sources of information s and t which impart the information S and T respec-
tively, where S and T are subsets of W to be interpreted as the information
that the actual “true” world is one of the worlds in S, respectively T . How
can we merge these two pieces of information into a single piece Merge(S, T )?
This basic problem has already been considered, outside of the literature on
non-prioritised revision, in several works (see Section 5). Our idea to solve it is
to incrementally weaken, i.e., enlarge, S or T or both until “common ground” is
reached, i.e., until their intersection is non-empty. To be slightly more precise
we start off with the pair 〈S0, T0〉 where S0 = S and T0 = T . If S0∩T0 6= ∅ then
we just take Merge(S, T ) = S0∩T0. But if S0∩T0 = ∅, i.e., S0 and T0 contradict
each other, then we perform what may be thought of as a “round of negotiation”
which is just a contest between S0 and T0. The loser of this contest (or both

2Some of our later counter-examples seem to depend on this assumption.
3We remark that this framework shares some similarities with the abstract formalisation

of negotiation found in [18]. For a more detailed treatment of negotiation see [17].



parties, if the contest ends in a draw) must then “make some concessions”, i.e.,
make some weakening of his position by admitting more possibilities, while the
winner stays the same. Thus we arrive at the pair 〈S1, T1〉 where S0 ⊆ S1 and
T0 ⊆ T1. Now if S1 ∩ T1 6= ∅ then we set Merge(S, T ) = S1 ∩ T1. Otherwise
the next round of negotiation takes place, this time between S1 and T1. Once
again the loser of this round makes concessions, and we keep going like this until
Si ∩ Ti 6= ∅, at which point we set Merge(S, T ) = Si ∩ Ti. Let us spell all this
out in detail.

We assume that the items of information supplied by s and t are always
non-empty subsets of W, i.e., elements of B. Let Ω denote the set of all finite
sequences of pairs of elements of B. Given ω = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Ω we
will say ω is increasing iff Si ⊆ Si+1 and Ti ⊆ Ti+1 for all i = 0, 1, . . . , n − 1.
We define the set of sequences Σ ⊆ Ω by

Σ = {ω = (〈S0, T0〉, 〈S1, T1〉, . . . , 〈Sn, Tn〉) ∈ Ω | ω is increasing,
and Sn ∩ Tn = ∅}.

A sequence σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ represents a possible stage in the
unfinished (since Sn ∩ Tn = ∅) negotiation process starting with S0 and T0.
Given i < n, we let σi denote that sequence consisting of the first i+ 1 entries
in σ, i.e., σi = (〈S0, T0〉, . . . , 〈Si, Ti〉).

In the simple negotiation scenario described above there were two ingredi-
ents in need of further specification. Firstly, we need to know how a round
of negotiation is carried out. In this paper we will only be interested in the
results of such negotiation rounds. Thus for our purposes it suffices to assume
the existence of a function g : Σ→ 2B which satisfies, for each σ ∈ Σ,

(g0) ∅ 6= g(σ) ⊆ {Sn, Tn}, where σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉).

The intuition behind the function g is that it selects, at each negotiation stage
σ, which of the two parties should make concessions. In other words it returns
the loser of the negotiation round at stage σ (or both parties, if the round ends
in a draw). In order to avoid deadlock, we stipulate that at least one party must
make concessions, i.e., g(σ) 6= ∅.

The second problem is then to decide what concessions the loser of the ne-
gotiation round should make. Once again we abstract away from the actual
process used to determine this and assume only that we are given, for each
σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ, a function Hσ : {Sn, Tn} → B with the inter-
pretation that Hσ(Sn) represents the weakening of Sn given that Sn must be
weakened at stage σ, and similarly for Hσ(Tn). Once again to avoid deadlock,
we stipulate that this weakening is strict, i.e., that Hσ satisfies the following
condition for each A ∈ {Sn, Tn}:

(H0) A ⊆ Hσ(A) and Hσ(A) * A4

We can now make the following definition.
4Note that, even though we are requiring that Hσ(A) be a strict weakening of A for both

A = Sn and A = Tn, these weakenings will only actually be “carried out” if A loses the



Definition 1 A belief negotiation model (relative to s and t) is a pair N =
〈g, {Hσ}σ∈Σ〉 where g : Σ→ 2B is a function which satisfies (g0) and, for each
σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ, Hσ : {Sn, Tn} → B is a function which satisfies
(H0).

In what follows we will sometimes denote the function g of a belief negotiation
model N = 〈g, {Hσ}σ∈Σ〉 by gN .

A belief negotiation modelN then uniquely determines, for any given S, T ∈ B
provided by s and t respectively, the complete process of negotiation between S
and T . This process is returned by the function fN : B × B → Ω given by

fN (S, T ) = σ = (〈S0, T0〉, 〈S1, T1〉, . . . , 〈Sn, Tn〉)

where (i) S0 = S and T0 = T , (ii) n is minimal such that Sn ∩ Tn 6= ∅, and (iii)
for each 0 ≤ i < n we have

Si+1 =
{
Hσi(Si) if Si ∈ g(σi)
Si otherwise. and Ti+1 =

{
Hσi(Ti) if Ti ∈ g(σi)
Ti otherwise.

A belief negotiation model thus gives us a way of merging two items of informa-
tion S and T . We simply take Merge(S, T ) = Sn ∩ Tn. However an interesting
aspect of our approach, which we will exploit in the next section, is that it allows
us to study Sn and Tn in their own right. For this purpose we define, from a
given belief negotiation model N , the functions fN→ , f

N
← : B × B → B by

fN→ (S, T ) = Sn and fN← (S, T ) = Tn,

where fN (S, T ) = (〈S0, T0〉, . . . , 〈Sn, Tn〉). Thus fN→ (S, T ) is the result (accord-
ing toN ) of weakening information S from source s to accommodate information
T from source t, while fN← (S, T ) is the result of weakening information T from
source t to accommodate information S from source s. Returning to our bridge
analogy from the introduction, fN→ (S, T ) represents that part of the bridge be-
tween S and T constructed from the side of S while fN← (S, T ) is the part built
from the side of T . Let us try and illustrate these definitions with an example.

Example 1 Let p and q be distinct propositional variables in L. Let’s assume
we know source s to be more reliable than source t when it comes to information
concerning the truth value of p, while s and t are equally reliable concerning
the truth value of q. Now suppose s provides the information that p and q
are both false, i.e., S = [¬p ∧ ¬q] while t provides the conflicting information
that p and q are both true, i.e., T = [p ∧ q]. We can merge these two pieces
of information using a belief negotiation model N = 〈g, {Hσ}σ∈Σ〉 relative to
s and t by constructing the sequence fN (S, T ) = σ in stages as follows. Let
S0 = S, T0 = T . Then σ0 = (〈S0, T0〉). Since S0 ∩ T0 = ∅ some negotiation

negotiation round at stage σ, i.e., A ∈ g(σ). Hence to avoid deadlock it is really only necessary
that Hσ(A) be a strict weakening of A for some A ∈ g(σ). Our stronger requirement above
comes from our desire to keep our conditions on the Hσ independent from our conditions on
g.



is necessary. We assume the first round of negotiation proceeds by focusing on
the truth value of p, about which there is obvious disagreement between S0 and
T0. Since we know information about p provided by s is more reliable than such
information provided by t we conclude that T0 is more likely to be wrong here
and so T0 is declared the loser of this negotiation round. This is reflected in
N by setting g(σ0) = {T0}. At this stage T0 is weakened by giving up p, but
holding on to q, i.e., Hσ0(T0) = [q] = T1, while S0 = S1 remains unchanged.
Thus we reach the stage σ1 = (〈S0, T0〉, 〈S1, T1〉). Since S1 ∩ T1 = ∅, a second
round of negotiation is required in which, this time, we focus on the truth value
of q. Again there is disagreement here between S1 and T1, but this time, since
s and t are equally reliable in matters concerning q, no outright winner can
be called in this round. This is reflected by setting g(σ1) = {S1, T1}. Hence
both S1 and T1 must be weakened. We assume S1 gives up ¬q but holds on
to ¬p, i.e., Hσ1(S1) = [¬p] = S2, while T1 gives up q but holds on to p → q,
i.e., Hσ1(T1) = [p → q] = T2. Now we have S2 ∩ T2 6= ∅ and so the negotiation
process ends here. We thus have

fN ([¬p ∧ ¬q], [p ∧ q]) = (〈[¬p ∧ ¬q], [p ∧ q]〉, 〈[¬p ∧ ¬q], [q]〉, 〈[¬p], [p→ q]〉),

while fN→ ([¬p ∧ ¬q], [p ∧ q]) = [¬p] and fN← ([¬p ∧ ¬q], [p ∧ q]) = [p → q]. The
result of merging [¬p ∧ ¬q] and [p ∧ q], according to N , is given by

fN→ ([¬p ∧ ¬q], [p ∧ q]) ∩ fN← ([¬p ∧ ¬q], [p ∧ q]) = [¬p].

Note that all values of g and Hσ for σ ∈ Σ, other than the ones mentioned, are
irrelevant to this example.

We now turn to applying belief negotiation models in a belief change setting.

3 Basic revision-contraction pairs

One way to view non-prioritised revision is as an operation which merges old
information (i.e., that contained in the agent’s belief set) with new information.
This suggests performing revision using a belief negotiation model N relative
to the information sources s and t, where now s is the agent and t is the agent’s
external information source. Formally we define the revision operator �N from
N by, for K ∈ K and φ ∈ L∗,

K �N φ = Th(fN→ ([K], [φ]) ∩ fN← ([K], [φ])).

But note that a spin-off of using belief negotiation models in this context is that
they also give rise to a notion of contraction. Interpreting the contraction of K
by φ ∈ L∗ as the weakening of K to accommodate ¬φ leads us quite naturally
to define, from N , the contraction operator �N by

K �N φ = Th(fN→ ([K], [¬φ])).

We make the following definition.



Definition 2 Let � : K×L∗ → 2L and � : K×L∗ → 2L be a pair of functions.
Then 〈�,�〉 is a basic revision-contraction pair iff � = �N and � = �N for
some belief negotiation model N .

In the AGM theory of belief change, operators of revision � and contrac-
tion � are each assumed to satisfy several properties known as the basic AGM
postulates for revision and contraction5 which we shall list now. We refer to
each postulate by its usual name, with the addition that we will prefix revision
postulates by r- and contraction postulates by c-. The basic AGM postulates
for revision are:

• K � φ = Cn(K � φ) (r-Closure)

• If φ1 ↔ φ2 ∈ Cn(∅) then K � φ1 = K � φ2 (r-Extensionality)

• φ ∈ K � φ (r-Success)

• K � φ ⊆ K + φ (r-Inclusion)

• If K ∪ {φ} is consistent then K + φ ⊆ K � φ (r-Vacuity)

• K � φ is consistent (r-Consistency)

Any function � : K × L∗ → 2L satisfying the above postulates is known as a
partial meet revision operator [1].6 For contraction the basic postulates are:

• K � φ = Cn(K � φ) (c-Closure)

• If φ1 ↔ φ2 ∈ Cn(∅) then K � φ1 = K � φ2 (c-Extensionality)

• φ 6∈ K � φ (c-Success)

• K � φ ⊆ K (c-Inclusion)

• If φ 6∈ K then K � φ = K (c-Vacuity)

• K ⊆ (K � φ) + φ (c-Recovery)

Any function � : K × L∗ → 2L satisfying the above contraction postulates is
known as a partial meet contraction operator [1].

For operators of non-prioritised revision, of course, the postulate (r-Success)
is considered too strong. Similarly for contraction one can imagine situations in
which (c-Success) is not satisfied, for example if an agent holds a belief so firmly
that it becomes “irretractible” from his belief set [16].7 Another contraction

5We do not consider the so-called supplementary postulates in this paper. See [8] for a
description of these as well as an explantion of the basic postulates.

6Actually the usual formulation of (r-Consistency) is “if φ is consistent then K � φ is
consistent” but, since we do not allow revising by inconsistent sentences, the antecedent here
is vacuous for us. Similar remarks apply to the contraction postulate (c-Success), whose usual
formulation is “if φ is not a tautology then φ 6∈ K � φ”.

7We remark that study of operations of contraction which violate (c-Success) does not
seem to have received the same level of attention as its revision counterpart. Exceptions here
are [4] and, using the framework of default logic, [5].



postulate which has been open to much debate is (c-Recovery) (see e.g. [6, 13]).
Any function � : K × L∗ → 2L which satisfies all the basic AGM contraction
postulates with the possible exception of (c-Recovery) is known as a withdrawal
operator [13].

Another characteristic of AGM theory is the interdefinability of revision and
contraction. To define a revision operator from a contraction operator we may
use the Levi Identity, while for the other direction we have the Harper Identity:

K � φ = (K � ¬φ) + φ (Levi Identity)

K � φ = (K � ¬φ) ∩K (Harper Identity)

What can we say about the properties of a basic revision-contraction pair? We
have the following syntactic characterisation.

Theorem 1 Let � : K×L∗ → 2L and � : K×L∗ → 2L be a pair of functions.
Then the following are equivalent:
(i). 〈�,�〉 is a basic revision-contraction pair.
(ii). � satisfies (r-Closure), (r-Extensionality), (r-Inclusion), (r-Vacuity) and
(r-Consistency); � satisfies (c-Closure), (c-Extensionality), (c-Inclusion) and
(c-Vacuity); and 〈�,�〉 satisfies, for all K ∈ K and φ ∈ L∗,

K � φ ⊆ (K � ¬φ) + φ (1/2-Levi)

K � ¬φ ⊆ K � φ (Mixed Inclusion)

The reader will note that the only basic AGM postulates missing from part (ii)
in the above theorem are the two success postulates and (c-Recovery).

In the next section we will see what happens to �N and �N when we force
certain restrictions on N . Before we do that, however, let’s look a little more
closely at the behaviour of basic revision-contraction pairs.

3.1 Other properties

In the rest of this section, unless otherwise indicated, 〈�,�〉 is an arbitrary but
fixed basic revision-contraction pair. An interesting property of basic revision-
contraction pairs is the following.

Proposition 1 For all K ∈ K and φ ∈ L∗, we have φ 6∈ K �φ iff φ 6∈ K �¬φ.

Thus a sentence is retractible with respect to � from a given belief set K iff
revising K, according to �, by its negation would lead us to reject it. Given
this proposition and the basic postulate (r-Consistency) we can see that � sat-
isfies (c-Success) whenever � satisfies (r-Success), although it can be shown
the converse is false.8 The following proposition, in conjunction with Propo-
sition 1 provides a counter-example to show that � does not generally satisfy
(c-Success).

8Due to space limitations we omit the relevant counter-example in this version of the paper.
Similar remarks apply at several other points in the paper.



Proposition 2 There exists a belief negotiation model N (such that gN satisfies
(g1) and (g2) – see Section 4) such that, for some K ∈ K and φ ∈ L∗, we have
φ ∈ K �N ¬φ.

Note that, although 〈�,�〉 satisfies (1/2-Levi), the “other half” of the Levi
Identity, i.e., (K � ¬φ) + φ ⊆ K � φ, does not hold in general, since if it did,
then � would satisfy (r-Success) (since φ ∈ (K � ¬φ) + φ for all φ). In fact
it can be shown that for basic revision-contraction pairs this half of the Levi
Identity is equivalent to (r-Success). As for the Harper Identity, well to begin
with (Mixed Inclusion) (together with (r-Extensionality) and (c-Extensionality))
and (c-Inclusion) give us

K � φ ⊆ (K � ¬φ) ∩K (1/2-Harper 1)

However, as in the case with the Levi Identity, we cannot in general strengthen
this to equality. In fact the Harper Identity does not hold, in general, for any
of the classes of basic revision-contraction pairs we present in this paper:

Proposition 3 There exists a belief negotiation model N (such that gN sat-
isfies (g3) – see Section 4) such that, for some K ∈ K and φ ∈ L∗, we have
(K �N ¬φ) ∩K 6⊆ K �N φ.

This counter-example together with the following proposition also shows that
� does not in general satisfy (c-Recovery).

Proposition 4 � satisfies (c-Recovery) iff the following two properties hold for
all K ∈ K and φ ∈ L∗:

(K � ¬φ) ∩K ⊆ K � φ (1/2-Harper 2)

K ⊆ (K � ¬φ) + φ (r-Recovery)

Note that (r-Recovery) follows from (r-Success). It can be shown that (r-Recovery)
does not hold in general for basic revision-contraction pairs.

It is natural to ask what happens if we actually force the Harper Identity to
hold. The following result shows the “harmlessness” of this exercise.

Proposition 5 Let � : K× L∗ → 2L be a function which satisfies (r-Closure),
(r-Extensionality), (r-Inclusion), (r-Vacuity) and (r-Consistency), and suppose
� : K×L∗ → 2L is defined from � via the Harper Identity. Then 〈�,�〉 forms
a basic revision-contraction pair.

This result shows that there are in fact (at least) two ways we can define a
basic revision-contraction pair from a given belief negotiation model N . The
first way is, as before, to define 〈�N ,�N 〉. The second way is to replace �N
here by �HN , which is the contraction operator defined from �N via the Harper
Identity. By (1/2-Harper 1), we have K �N φ ⊆ K �HN φ for all K ∈ K and
φ ∈ L∗, and so, from the agent’s point of view, a case can perhaps be made for
preferring the latter method, since it entails the agent giving up fewer beliefs
when performing a contraction. Note that, by Proposition 1, �HN will satisfy
(c-Success) iff φ 6∈ K �N ¬φ for all K and φ ∈ L∗ while, by Proposition 4, �HN
will satisfy (c-Recovery) iff �N satisfies (r-Recovery).



4 Restricting the belief negotiation model

Given a belief negotiation model N = 〈g, {Hσ}σ∈Σ〉 there is clearly scope for
making many restrictions on g and the Hσ — beyond the basic (g0) and (H0)
— in order to capture different behaviour for �N and �N , for example to try
and capture weaker versions of the success postulates. In this paper we leave
the Hσ alone and see what variations can be achieved just by fiddling with g.
We select three restrictions in turn on g, starting with the mildest. We obtain
three corresponding axiomatisations of the resulting classes of basic revision-
contraction pairs.

4.1 First restriction

Consider first of all the following property of a function g : Σ → 2B, for all
σ ∈ Σ,

(g1) |g(σ)| = 1

For a belief negotiation model N , the function gN will satisfy (g1) iff each
negotiation round according to N produces a winner, who does not make any
concessions, and a loser who does. In other words forcing gN to satisfy (g1)
removes the possibility of a negotiation round ending in a draw. We may prove
the following:

Theorem 2 Let 〈�,�〉 be a basic revision-contraction pair. Then the following
are equivalent:
(i). � satisfies the following property, for all K ∈ K and φ ∈ L∗,

If ¬φ ∈ K and ¬φ 6∈ K � φ then K ∪K � φ is inconsistent
(Weak Consistent Expansion)

(ii). 〈�,�〉 = 〈�N ,�N 〉 for some belief negotiation model N such that gN
satisfies (g1).

Note that the rule (Weak Consistent Expansion) is a weakening of (r-Success),
which implies that K ∪K � φ is inconsistent whenever ¬φ ∈ K. It can be
shown this rule does not hold in general for basic revision-contraction pairs.

4.2 Second restriction

Now consider the following condition on a function g : Σ→ 2B:

(g2) Given σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ, if Si ∈ g(σi) for some i < n, then
Sn ∈ g(σ)

This rule says that as soon as we reach a stage in which S0 must be weakened,
S0 must be weakened further and further at every subsequent stage in the ne-
gotiation. In conjunction with (g1) this rule says that in a negotiation process
between S and T all the weakening of T , if any, is done before any weakening
of S takes place.



Theorem 3 Let 〈�,�〉 be a basic revision-contraction pair. Then the following
are equivalent:
(i). 〈�,�〉 satisfies, for all K ∈ K and φ ∈ L∗,

If K * K � ¬φ then K ∪K � φ is inconsistent (Consistent Retainment)

(ii). 〈�,�〉 = 〈�N ,�N 〉 for some belief negotiation model N such that gN
satisfies (g1) and (g2).

It can be shown that, for basic revision-contraction pairs, (Consistent Retain-
ment) is a strictly stronger property than (Weak Consistent Expansion). The
following proposition gives a way of re-expressing it.

Proposition 6 For basic revision-contraction pairs, the rule (Consistent Re-
tainment) is equivalent to the conjunction of the following two rules:

If K ⊆ K � φ then K � ¬φ = K (Restricted Harper)

If K * K � φ then K ∪K � φ is inconsistent (Consistent Expansion)

The first rule above provides a restricted form of the Harper Identity. The
second has already been studied in [3] as a characteristic postulate for selective
revision operators. As is shown in that paper, it is a consequence of (r-Success)
together with (r-Vacuity). The following result may be proved using Theorem
3 and Propositions 5 and 6. It provides an alternative characterisation of a
particular class of selective revision operators which was characterised in [3]
(Theorem 4.5 there, though note that the model of [3] also handles the limiting
case of revising by an inconsistent sentence).

Theorem 4 Let � : K×L∗ → 2L be a function. Then the following are equiv-
alent:
(i). � satisfies the rules (r-Closure), (r-Extensionality), (r-Inclusion), (r-Vacuity),
(r-Consistency) and (Consistent Expansion).
(ii). � = �N for some belief negotiation model N such that gN satisfies (g1)
and (g2).

Note that, by Proposition 2, the two success postulates are still not satisfied. It
can also be shown that (r-Recovery) does not generally hold for basic revision-
contraction pairs satisfying (Consistent Retainment).

4.3 Last restriction

Finally we add our strongest restriction.

(g3) Given σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ, we have g(σ) = {Sn}

Note that (g3) implies both (g1) and (g2). This rule says that only S is
weakened. T stays the same throughout. Thus any belief negotiation model N
such that gN satisfies (g3) is heavily biased towards information source t. We
may prove the following:



Theorem 5 Let 〈�,�〉 be a basic revision-contraction pair. Then the following
are equivalent:
(i). � satisfies (r-Success) (and so � satisfies (c-Success)).
(ii). 〈�,�〉 = 〈�N ,�N 〉 for some belief negotiation model N such that gN
satisfies (g3).

Thus forcing gN to satisfy (g3) leads �N to satisfy all the basic AGM revision
postulates. In other words �N becomes a partial meet revision operator. The
operator �N , meanwhile, now satisfies all the basic AGM contraction postulates
with the possible exception (by Propositions 3 and 4) of (c-Recovery). Thus �N
becomes a withdrawal operator.

5 Related work on merging

As we said at the start of Section 2 the general problem of merging information
coming from different sources has already received various treatments. In this
section we briefly mention a few of these, some of which (namely [2, 11, 14])
actually generalise further than us in that they consider the problem of simul-
taneously merging together n pieces of information where possibly n > 2.

A difference between the present approach and papers such as [11, 12, 15]
is that the latter are interested only in fair merging, i.e., they assume that
the merging should always give equal precedence to the pieces of information
involved, regardless of their source. In the case of binary merging which we
consider this forces the merge operator to be commutative. Other approaches,
such as [2, 14], drop this fairness requirement. Both these papers introduce
explicit orderings of reliability or trustworthiness between sources (or, in the
case of [2], between sets of sources), with precedence being given to information
originating from the most reliable sources. In addition, [14] assumes that the
information provided by a source takes the form of a total pre-order over the
entire setW which intuitively represents a grading of the worlds inW according
to their relative plausibility. This is a richer type of information which goes
beyond just saying that the actual world is one of the worlds in a given subset
of W. The output of the merging operator of [14] is then another total pre-
order over W. (See also [10] for related work on ”multi-agent belief revision”).
It would be interesting to find out to what extent all this extra structure can be
incorporated into our approach, maybe as a possible basis from which to define
concrete instances of our functions g and Hσ. (Indeed the reader will notice that
we already used the notion of source-reliability informally to explain Example
1 in Section 2.)

6 Conclusion and further work

We have defined a negotiation-style framework for merging two pieces of infor-
mation coming from two distinct sources and have applied it to belief change.
This framework supports the study of operations of contraction which do not



necessarily satisfy (c-Success) and (c-Recovery). We showed how a particular
strain of Fermé and Hansson’s selective revision, as well as partial meet revision,
can be captured by adding simple constraints on the function g of a belief ne-
gotiation model N = 〈g, {Hσ}σ∈Σ〉 which basically relate to the order in which
concessions are made. Other constraints of this type are possible. For example
the following condition, in the presence of (g1), is a strengthening of (g2)

Given σ = (〈S0, T0〉, . . . , 〈Sn, Tn〉) ∈ Σ, Sn ∈ g(σ) iff S0 ∈ g(σ0)

When taken together with (g1) this rule has the effect that the decision is made
at the start of the negotiation which party must weaken, and then that party,
and only that party, must continue weakening until the negotiation ends. Due to
space limitations, the study of the effect of making this and other restrictions on
g (not to mention possible restrictions on the Hσ) will have to wait. Another area
of future research relates to the origin of the functions g and Hσ. In this paper we
just assumed these functions were given. It would be interesting to define more
concrete instances of them. Finally in this paper we represented the agent’s
belief state as a belief set, i.e., a deductively closed set of sentences. Alternative
ways of formally representing belief states have been proposed, most notably as
belief bases, i.e., sets of sentences which are not necessarily deductively closed
[8]. Operators of non-prioritised revision for belief bases have been studied [7, 9].
It should be possible to modify our framework so that it too handles this case.
This too will be left to future work.
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