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Abstract

We provide a formal study of belief retraction operators that do not necessarily satisfy the
(Inclusion) postulate. Our intuition is that a rational description of belief change must do
justice to cases in which dropping a belief can lead to the inclusion, or ‘liberation’, of others in
an agent’s corpus. We provide a few possible weakenings of the (Inclusion) postulate and then
provide two models of liberation via retraction operators, σ-liberation and linear liberation. We
show that the class of σ-liberation operators is included in the class of linear ones and provide
axiomatic characterisations for each class. We also show how any given retraction operator
(including the liberation operators) can be ‘converted’ into either a withdrawal operator (i.e.,
satisfying (Inclusion)) or a revision operator via (a slight variant of) the Harper Identity and
the Levi Identity respectively.

1 Introduction

Formal modelings of rational belief change are inevitably interested in plausible descriptions of
the process of dropping beliefs. The AGM framework, named after its originators Alchourrón,
Gärdenfors and Makinson [1, 7], characterises belief contraction via a set of postulates. One of
these, (Inclusion), states that the belief set that is the result of contraction must be included in the
belief set prior to contraction. Justifications for (Inclusion) are hard to find - it is usually just taken
for granted. But, there are situations in which the removal of a belief might lead to the inclusion
of new ones. Consider an agent that keeps track of information received and which has received
both ¬φ and then φ over a period of time. When it draws inferences from this set of information,
it prioritises more recent information and hence does not infer ¬φ. But information that causes it
to retract φ can be viewed as also leading to either an increase in the plausibility of ¬φ or even
to a belief in ¬φ and other beliefs that were blocked by φ. A similar situation occurs in settings
involving default reasoning [16]. If an agent was committed to a default rule that sanctioned belief
in φ provided it was consistent to assume ψ, and also believed ¬ψ to be true, it would be unable
to apply the default rule and would consequently not believe φ. Retraction of the belief ¬ψ makes
the default rule applicable, thus sanctioning belief in φ.



We believe that the overriding messages from examples like these is that removing one belief
might remove the grounds for withholding another. That is, when a ‘blocking’ belief is removed from
an agent’s belief corpus, so are the reasons or arguments against other beliefs which the agent had
not previously entertained. Such a model is in the spirit of a foundational approach to belief change
[4] and this is, we argue, as it should be, since an agent’s corpus is most plausibly viewed as a set of
beliefs along with the reasons for holding them. Thus, belief retractions can be ‘liberating’: beliefs
which were blocked are ‘set free’. In this paper we start from a set of basic postulates for retraction
which excludes (Inclusion) and also the much-debated postulate of (Recovery). The broad class
of operators so defined is designed to include the ‘traditional’ operators of AGM contraction and
withdrawal [12], but our main focus is to study those retractions which can be viewed as liberation
operators. We do not aim to jettison the Principle of Minimal Change in this study - the intuitions
there are certainly worth retaining. Doing justice to that particular methodological principle while
not ignoring other equally important ones1, and rejecting (Inclusion) will be an objective of ours.
A formal argument which supports our pre-theoretic intuitions above is that it is well-known that,
when defining a revision operator ∗ from an AGM contraction operator ÷ via the Levi Identity
([7], see also Section 4.2 of this paper), ÷ isn’t required to satisfy (Recovery) to ensure ∗ satisfies
the AGM revision postulates. Less widely acknowledged is the fact that ÷ doesn’t have to satisfy
(Inclusion) either. That is, if ÷ is a retraction and ∗ is defined from ÷ via Levi then ∗ is a partial
meet revision.

We begin in Section 2 by formally defining retraction operators and by looking at a few possible
weakenings of the (Inclusion) postulate. In Section 3 we provide two models of liberation via
retraction operators, σ-liberation and linear liberation. Each of these utilises a finite sequence of
sentences which guides the operation of belief removal. Though they differ in the way they utilise
the sequence, we will show that the class of σ-liberation operators is included in the class of linear
liberation operators and provide axiomatic characterisations for each class. We also axiomatise a
number of subclasses of linear liberation. In Section 4 we show how a given retraction operator
can be ‘converted’ into either a withdrawal operator (satisfying (Inclusion)) or a revision operator
using (a slight variant of) the Harper Identity and the Levi Identity respectively. Section 5 is
given over to a discussion of one of the postulates which characterises σ-liberation, namely (Strong
Conservativity). We briefly conclude in Section 6 before finishing off with some ideas for further
work in Section 7.

We assume a propositional language L generated by finitely many propositional variables. We
use |= to denote classical entailment and Cn to denote the classical logical consequence operator;
>,⊥ have their usual meanings. We assume that the object of change is a consistent belief set K
i.e., a deductively closed set of sentences. We take K to be arbitrary and fixed throughout. As is
usual we use K + φ to denote Cn(K ∪ {φ}). In this paper we do not consider the more difficult
problem of iterated retraction.

2 Postulates for retraction

We first present the basic AGM postulates, which characterise partial meet contraction [1]. We use
K m φ to denote the result of removing the sentence φ from K.

(L1) K m φ = Cn(K m φ) (Closure)
1Such an approach is explicit in the work of Rott and Pagnucco[17], and Meyer et al.[13] where the Principle of

Minimal Change gives way to other methodological principles.



(L2) If 6|= φ then φ 6∈ K m φ (Success)

(L3) If φ 6∈ K then K m φ = K (Vacuity)

(L4) If |= φ1 ↔ φ2 then K m φ1 = K m φ2 (Extensionality)

(L5) K m φ ⊆ K (Inclusion)

(L6) K ⊆ (K m φ) + φ (Recovery)

(Recovery) has already been seen as problematic (see for example [8, 12]). Following [12], we
will call any operator which satisfies (L1)–(L5) a withdrawal operator. We want now to go a step
further and shed (Inclusion) from the list as well. However we keep the following basic condition,
which follows from (L1), (L5) and (L6):

K m > = K (Failure)[6]

Definition 1 Let K be a belief set and m be an operator for K. Then m is a retraction operator
(for K) iff m satisfies (L1)–(L4) and (Failure).

2.1 Weaker versions of (Inclusion)

While we reject (Inclusion), we intend to do justice to the Principle of Minimal Change. Thus it
behooves us to look for weaker versions which disallow gratuitous addition of new beliefs. We now
consider some potential weakenings. Later we will check whether our proposed liberation operators
satisfy these weakenings. The first is the following:

(w1) If θ ∈ K m φ and θ 6∈ K then ¬θ ∈ K

This rule stipulates when a sentence may be introduced into the new belief set during an operation
of removal: a new sentence θ may be introduced only if its negation was present before the removal
operation (and, since K m φ is always consistent,2 has necessarily been given up during the re-
moval). This formalises the intuition that a new sentence is introduced only if there was previously
something present in the belief set which had kept it out but which is now no longer there. Though
(w1) looks reasonable at first glance, the following indicates it is too strong for our purposes.

Proposition 1 In the presence of (Closure), the rule (w1) is equivalent to:

(w1′) If K is not complete then K m φ ⊆ K

Since this result may seem somewhat surprising, let us briefly give its proof. To show (w1) implies
(w1′) suppose K is not complete3. Then there exists some λ ∈ L such that both λ 6∈ K and
¬λ 6∈ K. If there existed θ ∈ (K m φ)\K then θ 6∈ K would give us either θ∨λ 6∈ K or θ∨¬λ 6∈ K
(since K is deductively closed). Suppose the former holds. Then, since θ ∨ λ ∈ K m φ (which
follows from θ ∈ K m φ and (Closure)), we may apply (w1) to obtain ¬(θ∨λ) ∈ K and so ¬λ ∈ K.
In a similar way if we suppose θ ∨ ¬λ ∈ K m φ then we obtain λ ∈ K. Either way we get a
contradiction and so there can be no θ ∈ (K m φ)\K, i.e., K m φ ⊆ K as required. To show (w1′)
implies (w1) suppose θ ∈ (K m φ) \K. Then K m φ 6⊆ K and so, applying (w1′), we must have
that K is complete. Hence, from θ 6∈ K we get ¬θ ∈ K as required.

2This is already ensured by the (Success) postulate.
3A belief set K is complete iff for all λ ∈ L either λ ∈ K or ¬λ ∈ K.



The rule (w1′) says that (Inclusion) holds whenever the prior belief set K is not complete.
Since the prior belief set K typically will not be complete, (w1′) isn’t much of a weakening of
(Inclusion) and we should not be too disappointed when a suggested operation of retraction does
not satisfy it (or the equivalent (w1))4. A relaxed version of (w1) is:

(w2) If θ ∈ K m φ and θ 6∈ K then there exists ψ ∈ L such that ψ |= θ, ¬ψ ∈ K and ψ ∈ K m φ

That is, every θ ∈ (K m φ) \K can be ‘traced back’ to, i.e., is a logical consequence of, a sentence
whose negation was in K but which is now included in K m θ. Equivalently:

Proposition 2 In the presence of (Closure), the rule (w2) is equivalent to:

(w2′) If (K m φ) ∪K is consistent then K m φ ⊆ K

(w2′) says: the new belief set is either included in the old one, or the agent now believes the
negation of a sentence it previously held to be true. That is, if the agent does not weaken its belief
set, it has made a complete about-turn regarding some beliefs.

Our last weakening of (Inclusion) is a property often held to be characteristic of withdrawal
operators. Recall that, when one removes a sentence θ from K using an operation m of withdrawal,
one does so without thereby including its negation ¬θ in the new belief set. There is just one
possible situation when ¬θ ∈ K m θ, and that is if ¬θ ∈ K (in which case – assuming as we do
that K is consistent – θ 6∈ K and so K m θ = K by (Vacuity)). That is, the following rule is taken
to hold:

(w3) If ¬θ 6∈ K then ¬θ 6∈ K m θ

3 Models of liberation

We now present two models of liberation operators; each will be presented in terms of finite se-
quences of sentences. The second model is more general than the first: the class of liberation
operators it generates includes that generated by the first.

3.1 σ-liberation

In our first model, the central intuition is that both the agent’s set of beliefs and the way it removes
beliefs from its belief set are formed on the basis of the information that it has received over the
course of its intellectual career. We assume the agent has at its disposal a given belief sequence σ
which is just a finite sequence (α1, . . . , αn) of sentences, with αn being the most recent information
the agent has received5. What beliefs is the agent committed to on the basis of σ, i.e., what is the
belief set Kσ associated with σ? An obvious answer would be to take the set [[σ]] of all the sentences
appearing in σ and to then close under Cn. The problem with this answer, of course, is that we
would like Kσ to be consistent, and it could well be that [[σ]] is inconsistent. Instead we use the
priority of information encoded in σ to help us - initially - pick out consistent subsets of [[σ]]. We
define the increasing sequence of sets Γi(σ) inductively by setting Γ0(σ) = ∅ and then, for each
i = 0, 1, . . . , n− 1,

Γi+1(σ) =
{

Γi(σ) ∪ {αn−i} if Γi(σ) ∪ {αn−i} 6|= ⊥
Γi(σ) otherwise

4Note that this equivalence depends on the presence of (Closure), i.e., on the new belief set being deductively
closed. It could well be a different story if we worked instead with logically open belief bases [10].

5The sentences can stand for anything, not just a record of observations. The main thing is that we have a linearly
ordered/prioritised set of sentences. Such a treatment is reminiscent of [3]. See also [15].



That is, starting with αn, we work our way backwards through the sequence, adding each sentence
as we go, provided it is consistent with the sentences collected up to that point. Note Γn(σ) forms
a maximal consistent subset of [[σ]]. (In particular if [[σ]] is consistent then Γn(σ) = [[σ]].) We then
take Cn(Γn(σ)) to be the belief set associated with σ.

Definition 2 Let K be a belief set and σ = (α1, . . . , αn) a belief sequence. We say σ is a belief
sequence relative to K iff K = Cn(Γn(σ)).

Example 1 Suppose σ = (¬p ∧ ¬q, p, p → q) where p and q are distinct propositional variables.
Then Γ0(σ) = ∅, Γ1(σ) = {p→ q}, Γ2(σ) = {p, p→ q} = Γ3(σ). Hence the belief set K associated
with this σ is given by K = Cn(Γ3(σ)) = Cn(p ∧ q). Note how belief in the first/oldest sentence
¬p ∧ ¬q in σ is suppressed in particular by the more recent sentence p.

Given a belief sequence σ relative to K, we want to use σ to define an operation mσ for K
such that K mσ φ represents the result of removing φ from K. If φ is a tautology we just set
K mσ φ = K. Otherwise we introduce sequences of sets Γi(σ, φ) inductively by setting Γ0(σ, φ) = ∅
and then, for each i = 0, 1, . . . , n− 1,

Γi+1(σ, φ) =
{

Γi(σ, φ) ∪ {αn−i} if Γi(σ, φ) ∪ {αn−i} 6|= φ
Γi(σ, φ) otherwise

That is, starting at the end with αn, we work our way backwards through the sequence, adding
each sentence as we go, provided adding it to the sentences collected up to that point does not
lead to the inference of φ. Note that Γi(σ) = Γi(σ,⊥) and that Γn(σ, φ) is set-inclusion maximal
amongst the subsets of [[σ]] which do not imply φ. We then set

K mσ φ =
{
Cn(Γn(σ, φ)) if 6|= φ
K otherwise

Definition 3 Let K be a belief set and m be an operator for K. Then m is a σ-liberation operator
(for K) iff m = mσ for some belief sequence σ relative to K.

Example 2 Suppose K = Cn(p∧q) and let σ from Example 1 be the belief sequence relative to K.
Suppose we wish to remove p. We first compute Γ3(σ, p). We have Γ0(σ, p) = ∅, Γ1(σ, p) = {p→ q}
= Γ2(σ, p) and Γ3(σ, p) = {¬p ∧ ¬q, p → q}. Hence K mσ p = Cn(Γ3(σ, p)) = Cn(¬p ∧ ¬q). Note
how, at the second stage, p is nullified, which leads to the reinstatement, or liberation, of ¬p ∧ ¬q.

As the above example clearly shows, σ-liberation operators do not necessarily satisfy (Inclusion).
In fact this example shows that σ-liberation does not satisfy the weaker version (w3) since we
have ¬p 6∈ K but ¬p ∈ K mσ p. Hence σ-liberation can result in the addition of the negation of
the sentence being removed. This example also shows that σ-liberation doesn’t satisfy (w1) (or,
therefore, (w1′)), since we have (¬p ∧ ¬q) ∨ r ∈ (K mσ p) \K but ¬((¬p ∧ ¬q) ∨ r) 6∈ K for any
propositional variable r distinct from p, q. What properties are satisfied by σ-liberation? Well,
first of all, we can confirm that σ-liberation is indeed a retraction operator according to our basic
definition:

Proposition 3 Every σ-liberation operator satisfies the basic retraction postulates—(L1)–(L4)
and (Failure)— and so is a retraction operator.

We can also show that σ-liberation operators satisfy the weak inclusion postulate (w2), but for
this we will wait until Section 3.3 where we provide an axiomatic characterisation of σ-liberation.



3.2 Linear liberation

We now use a different way of using a sequence of sentences to define a retraction operator. These
sequences are different from the σ used before, and will be employed in a simpler fashion. Intuitively,
the agent has in mind several different candidate belief sets. We assume that the agent can order
these candidate belief sets linearly according to preference, with the agent’s actual current belief set
identified with the most preferred belief set in this ordering. Since we work in a finite propositional
language, every belief set can be identified with a single sentence. Therefore, we represent the
agent’s epistemic state as a sequence ρ = (β1, . . . , βm) of sentences, where each βi stands for the
belief set Cn(βi). Cn(β1) is the most preferred belief set, Cn(β2) is the next most preferred belief
set, and so on6.

Definition 4 Let K be a belief set and ρ = (β1, . . . , βm) a finite sequence of sentences. Then ρ is
a K-sequence iff we have K = Cn(β1).

Now to remove a sentence φ from K using a K-sequence ρ we just take our new belief set to be
the one generated by the most preferred sentence – according to ρ – which does not imply φ. If
no such sentence exists, equivalently, if

∨
k βk |= φ, then we just take our new belief set to be K

if φ is a tautology, and Cn(∅) otherwise. More precisely, from a given K-sequence ρ we define the
operator mρ for K by

K mρ φ =


Cn(βi) where i = min{k | βk 6|= φ} if

∨
k βk 6|= φ

K if |= φ
Cn(∅) otherwise

Definition 5 Let K be a belief set and m be an operator for K. Then m is a linear liberation
operator (for K) iff m = mρ for some K-sequence ρ.

K-sequences essentially correspond to the ‘linear’ variety of the type of general epistemic state
considered by Alexander Bochman [2]. (Unlike us, Bochman also considers infinite languages.)

It turns out that linear liberation operators do not generally satisfy (Inclusion) either. For a
very simple counterexample let K = Cn(p) and consider the K-sequence ρ = (p,¬p). Then clearly
we get K mρ p = Cn(¬p), so ¬p has entered the belief set. Thus linear liberation operators also
fail to satisfy (w3). We can characterise the class of linear liberation operators as follows (cf.
Representation Theorem 5 in [2]):

Proposition 4 Let K be a belief set and m an operator for K. Then m is a linear liberation
operator iff m is a retraction operator that satisfies

If θ 6∈ K m (θ ∧ φ) then K m θ = K m (θ ∧ φ) (Hyperregularity)

The name (Hyperregularity) comes from [9]. When added to the basic retraction postulates this
rule allows us to derive some extra properties:

Proposition 5 Let m be a retraction operator which satisfies (Hyperregularity). Then m also
satisfies the following two properties:

• Either K m (θ ∧ φ) = K m θ or K m (θ ∧ φ) = K m φ
6Since ρ is a sequence this means that the same sentence may appear more than once in ρ. However, for the results

in this paper, it turns out that this feature can be ignored if desired.



• If θ 6∈ K m φ and φ 6∈ K m θ then K m θ = K m φ

The first property above is the postulate known as (Decomposition) from [1]. The second property
gives a condition for when removing two different sentences yields the same result. We now look
at some subclasses of the class of linear liberation operators.

3.3 Special cases of linear liberation

Note that, in the definition of a K-sequence, there need not be any relationship between the
sentences βi. Other, more restricted classes of liberation operators can now be found by placing
restrictions on the βi. We consider four here. First it is natural to ask: when does a linear liberation
operator mρ satisfy (Inclusion)? It is quite easy to see that this will happen if and only if each
sentence in ρ is a logical consequence of β1, i.e.,

(A) For each i = 1, . . . ,m we have β1 |= βi

Proposition 6 Let m be a linear liberation operator for K. Then m satisfies (Inclusion) iff m = mρ
for some K-sequence ρ which satisfies condition (A).

Next consider the following, stronger, condition on a K-sequence ρ = (β1, . . . , βm):

(B) For i < j we have βi |= βj

(B)—which says that sentences get progressively logically weaker through ρ7— leads to an impor-
tant class of withdrawal operators – the class of severe withdrawal operators [17] which, as is shown
in [17], may be characterised by the basic retraction postulates plus (Inclusion) and the following
two rules:

• If 6|= θ then K m θ ⊆ K m (θ ∧ φ)

• If θ 6∈ K m (θ ∧ φ) then K m (θ ∧ φ) ⊆ K m θ (Conjunctive Inclusion)

Note that the second rule above corresponds to “one half” of (Hyperregularity). It is in fact one
of the two AGM supplementary postulates for contraction [1]. The first rule above is essentially a
strengthened version of the other supplementary postulate “(K m θ) ∩ (K m φ) ⊆ K m (θ ∧ φ)”.

Proposition 7 Let K be a belief set and m an operator for K. Then m = mρ for some K-sequence
ρ which satisfies condition (B) iff m is a severe withdrawal operator.

An example of a condition that doesn’t lead to the satisfaction of (Inclusion) is the following:

(C) For i 6= j, βi ∧ βj is inconsistent

Thus (C) says that the sentences in ρ represent mutually incompatible points of view.

Proposition 8 Let K be a belief set and m an operator for K. Then m = mρ for some K-sequence
ρ which satisfies condition (C) iff m is a linear liberation operator that satisfies

If (K m θ) ∪ (K m φ) is consistent then K m θ = K m φ (Dichotomy)
7Such sequences are also studied in [5] from the perspective of qualitative utility in economics.



A justification for this postulate is provided by the condition on the sequence ρ. An agent has
a sequence of mutually incompatible belief sets. Its way of dealing with changes will necessarily
have to be dichotomous. When is such a mode of reasoning sensible? When the agent has become
quite sophisticated through a process of refinement and ironing out differences in its belief corpus.
The theories in ρ, then, are most plausibly viewed as the end products of a period of making small
changes and converging on a cluster of (incompatible) alternatives. Therefore, we refer to this type
of liberation as dichotomous liberation. (Dichotomy) can also be seen as describing belief change
that lies between contraction and revision - a view confirmed by the discussion in Section 4.1.

Finally we have the following condition:

(D) For i < j we have either βi |= βj or βi ∧ βj |=
∨
k<i βk

Each of (B) and (C) implies (D), a condition which leads us to the following subclass of linear
liberation:

Proposition 9 Let K be a belief set and m an operator for K. Then m = mρ for some K-sequence
ρ which satisfies condition (D) iff m is a linear liberation operator that satisfies

If (K m θ) ∪ (K m φ) 6|= φ then K m θ ⊆ K m φ (Strong Conservativity)

The postulate (Strong Conservativity) has been studied in [9], where it is shown to be a character-
istic postulate for base-generated maxichoice contraction operators. We shall discuss this postulate
in Section 5. The significance of this particular subclass of linear liberation operators is that it is
equivalent to none other than the class of σ-liberation operators from Section 3.1. The correspon-
dence is proved in the following result:

Proposition 10 Let K be a belief set. Then for each belief sequence σ relative to K there exists a
K-sequence ρ satisfying (D) such that mσ = mρ. Conversely for each K-sequence ρ satisfying (D)
there exists a belief sequence σ relative to K such that mρ = mσ.

Hence we may state:

Corollary 1 Let K be a belief set and let m be an operator for K. Then m is a σ-liberation operator
iff m is a linear liberation operator that satisfies (Strong Conservativity).

So σ-liberation may be axiomatically characterised by the basic retraction postulates plus (Hyper-
regularity) and (Strong Conservativity). Furthermore the results of this section allow us to say
more. For instance we can now immediately see that every severe withdrawal operator is also a
σ-liberation operator (as is every dichotomous liberation operator). Also, since it is known that se-
vere withdrawal doesn’t satisfy (Recovery), σ-liberation doesn’t satisfy (Recovery) either. Finally,
note that the weak inclusion postulate (w2′) is just a special instance of (Strong Conservativity)
(since K m ⊥ = K for any retraction operator for K, a fact that follows from (Vacuity) and our
assumption that K is consistent). Hence we can now see that every σ-liberation operator satisfies
(w2′) (and the equivalent (w2)).

4 From retraction to withdrawal and revision

In this section we consider the relationship between retraction operators and the two more tradi-
tional belief change operators of withdrawal and revision. In particular we show how retraction
operators can be ‘converted’ into either withdrawal or revision operators.



4.1 Retraction to withdrawal

What distinguishes retraction operators from withdrawal operators is that removing beliefs using
the former may lead to the introduction of new beliefs into the belief set, while using the latter
always leads to a new belief set which is a subset of the prior belief set. However, there is a simple
way in which a given retraction operator may be transformed into a withdrawal operator. After
retraction is performed, we simply discard all sentences which were not originally elements of K,
i.e., from each retraction operator m for K we can define the new operator l for K by setting for
each φ ∈ L,

K l φ = K ∩ (K m φ)

Obviously l is guaranteed to satisfy (Inclusion). This is strongly reminiscent of the Harper Identity
[7]. A formal difference is the appearance of “φ” rather than “¬φ” on the right-hand side. A more
crucial difference is that while the Harper Identity is usually employed as a means of obtaining a
withdrawal operation from a given revision operator, here we use a slight variant of it to obtain
a withdrawal operator from a retraction operator. Continuing with our liberation metaphor, we
make the following definition:

Definition 6 Let K be a belief set and let m be an operator for K. If the operator l for K is
defined from m as above then we call l the incarceration8 of m.

It is fairly easy to see that, as well as (Inclusion), the incarceration of a retraction operator also
satisfies (Closure), (Success), (Vacuity) and (Extensionality), and thus that

Proposition 11 The incarceration of a retraction operator is a withdrawal operator.

What about our subclasses of liberation operators? What happens, for instance, when we take
the incarceration of a linear liberation operator? Suppose m is a linear liberation operator. Then
by definition we have m = mρ for some K-sequence ρ. Now we can perform a modification to ρ to
get a new sequence f(ρ) as follows. Given ρ = (β1, . . . , βm) we just replace each βi by βi ∨ β1 (for
i > 1), i.e., we define

f(ρ) = (β1, (β2 ∨ β1), (β3 ∨ β1), . . . , (βn ∨ β1))

Clearly, since β1 is unchanged, f(ρ) is again a K-sequence. Furthermore we have:

Proposition 12 Let ρ be a K-sequence and l be the incarceration of mρ. Then l = mf(ρ).

Thus the incarceration of a linear liberation operator is again a linear liberation operator which
furthermore satisfies (Inclusion). Also, every linear liberation operator satisfying (Inclusion) arises
as the incarceration of some linear liberation operator, namely itself. Note too, that the postulates
for linear liberation together with (Inclusion) characterise the first special case of linear liberation
(i.e., the sequences which satisfy (A)).

What happens when we take the incarceration of a σ-liberation operator? From Proposition 9
and Corollary 1 we know that m forms a σ-liberation operator iff m = mρ for some K-sequence ρ
which satisfies the condition (D). Thus we know from Proposition 12 that if l is the incarceration
of a σ-liberation operator then l = mf(ρ) for some K-sequence ρ which satisfies (D). We can show
the following:

Proposition 13 Let ρ be a K-sequence. If ρ satisfies condition (D) then so too does f(ρ).
8We are grateful to David Makinson for suggesting this terminology.



Thus the condition (D) on K-sequences remains invariant under the modification f . (We remark
that the same cannot be said of condition (C).) This result tells us then that every incarceration of
a σ-liberation operator has the form mρ for some ρ satisfying condition (D). Hence as a corollary
we may state:

Corollary 2 The incarceration of a σ-liberation operator is again a σ-liberation operator which
furthermore satisfies (Inclusion). Also, every σ-liberation operator satisfying (Inclusion) arises as
the incarceration of some σ-liberation operator, namely itself.

4.2 Retraction to revision

To revise a belief set K by a given sentence φ means to modify K so that it includes φ, while
preserving consistency. From each retraction operator m for K we can define the revision operator
∗ for K via the Levi Identity:

K ∗ φ = (K m ¬φ) + φ

The Levi Identity is usually employed to define a revision operator from a given withdrawal operator.
A central result in the AGM theory of belief change [1, 12] shows that if m is a withdrawal operator
then ∗ satisfies all the basic AGM postulates for revision9. The next result confirms that it is not
necessary for m to satisfy (Inclusion) for this result to go through.

Proposition 14 Let m be a retraction operator for K and let ∗ be defined from m via the Levi
Identity. Then ∗ satisfies the basic AGM revision postulates (relative to K). Furthermore, for
every operator ∗ for K which satisfies the basic AGM revision postulates there exists a retraction
operator m for K such that ∗ may be obtained from m via the Levi Identity.

The first part of this proposition follows from the proof of the AGM result for withdrawal operators,
and by noticing that in the only place in that proof where (Inclusion) is applied, namely in showing
that the revision postulate “K ∗φ ⊆ K+φ” holds, it can be replaced with a use of (Vacuity) (in fact
(Weak Vacuity 1) – see below). The second part follows from the well-known result in AGM theory
that every operator ∗ satisfying the basic AGM revision postulates may be obtained via the Levi
Identity from a partial meet contraction operator for K (i.e., satisfying (L1)–(L6)). Clearly every
partial meet contraction operator is a retraction operator according to our definition. The above
result shows us, then, that retraction operators are equally as suitable as withdrawal operators
when it comes to using them as a stepping-stone for revision. For linear liberation operators we
can say more:

Proposition 15 Let m and ∗ be as in the previous proposition. Then if m additionally satisfies
(Hyperregularity) then ∗ will satisfy both supplementary AGM revision postulates. Furthermore, for
every operator ∗ for K which satisfies all the AGM revision postulates (basic plus supplementary)
there exists a retraction operator m for K satisfying (Hyperregularity) such that ∗ may be obtained
from m via the Levi Identity.

The second part of this proposition is shown by observing that every severe withdrawal operator
is a retraction operator satisfying (Hyperregularity). From results in [17, Sect. 7] we know that,
given any operator ∗ for K satisfying the full list of AGM revision postulates, there is a severe
withdrawal operator which, when the Levi Identity is applied to it, yields ∗.

9[10] points out that m is not required to satisfy (Closure) for this result. For the full list of (basic plus supple-
mentary) AGM revision postulates we refer the reader to, e.g., [7, 10].



For a given retraction operator m it is natural to wonder what happens if, instead of applying
the Levi Identity directly to m, we first take its incarceration l and then apply the Levi Identity
to l. The next result shows that this has no effect on the resulting revision operator, i.e., that m
and l are revision-equivalent [12].

Proposition 16 Let m be a retraction operator for K and let l be the incarceration of m. Then,
for all φ ∈ L, (K m ¬φ) + φ = (K l ¬φ) + φ.

The above result may seem surprising. Since it is perfectly possible that K m φ ⊃ K l φ, it might
be expected that revision based on m could sometimes lead to a strictly larger belief set than revision
based on just l. However, since every retraction operator satisfies (Weak Vacuity 1) (see below),
we have (K m ¬φ) + φ ⊆ (K + φ) + φ = K + φ, and so (K m ¬φ) + φ = (K + φ) ∩ ((K m ¬φ) + φ)
= (K ∩ (K m ¬φ)) + φ = (K l ¬φ) + φ as claimed.

Overall, the results of this section have shown that it is possible to get a long way without
(Inclusion). However we end this section by remarking that it is possible to get away with even
less of the AGM contraction postulates, for propositions 11, 14, 15 and 16 do not even need the
full power of (Vacuity); they can be derived using both of its following two weakenings, the first of
which also doubles as another weakening of (Inclusion):

• K m φ ⊆ K + ¬φ (Weak Vacuity 1)

• If φ 6∈ K then K ⊆ K m φ (Weak Vacuity 2)

5 The postulate (Strong Conservativity)

As we saw in Section 3.3, the key postulate which characterises the class of σ-liberation operators
within the larger class of linear liberation operators is (Strong Conservativity). In Section 4.1 we
saw that this property also holds for the class of withdrawal operators which are the incarcerations
of the σ-liberation operators. In this section we want to take a closer look at this postulate. We
give two arguments for its reasonableness: one based on its interplay with the other postulates, in
particular (Recovery), and one showing how it can be given an interpretation which squares well
with the Principle of Minimal Change.

5.1 (Strong Conservativity) and (Recovery)

First of all, the connections between (Strong Conservativity) and some of the other postulates seem
to indicate that it’s a reasonable requirement, at least for withdrawal operators:

Proposition 17 Let m be an operator for K which satisfies (Inclusion), (Closure), (Extensional-
ity), (Success) and (Conjunctive Inclusion). Then the following are equivalent:
(i). m satisfies both (Recovery) and (Strong Conservativity).
(ii). m satisfies the following property:

If θ ∈ K and θ 6∈ K m φ then θ → φ ∈ K m φ (Fullness)

(Fullness) is the characteristic postulate of the so-called maxichoice contraction operators [1] and
as such represents ‘pure’ minimal change. The problem with maxichoice contraction is that it
can often lead to unintuitive results (see [7]). This prompts the search for weakened versions of
(Fullness) which embody less stringent forms of minimal change. The above direction (ii)⇒(i)
shows that (in the presence of those other rules) both (Strong Conservativity) and (Recovery) fit



the bill equally well here. However the direction (i)⇒(ii) shows that we can’t have both properties
without again getting (Fullness). The path chosen by AGM is to go with (Recovery) and leave
out (at least implicitly) (Strong Conservativity). But if we agree with the many authors who have
called (Recovery) into question and decide to relax it, (Strong Conservativity) ought then to come
back into serious consideration. To put it another way, (Strong Conservativity) gets liberated by
the removal of (Recovery)!

5.2 (Strong Conservativity) and the Principle of Minimal Change

One way to formalise the Principle of Minimal Change is to consider the relationship between
the belief sets obtained when removing different sentences from a belief set K. We will look
specifically at what can be said about the union of these resulting belief sets. Consider any two
sentences θ and φ. If (K m θ) ∪ (K m φ) is inconsistent, there is no relationship at all between
these two belief sets. For retraction operators satisfying (Inclusion) this can never occur, but
for those satisfying (Dichotomy) it will necessarily be the case. If K m φ is strictly included in
K m θ then (K m θ) ∪ (K m φ) = K m θ. By (Success) it follows that K m φ 6|= θ and that
(K m θ)∪ (K m φ) 6|= θ. So we cannot insist that θ be contained in K m φ, nor can we require that
the union of K m φ and K m θ give us θ. On the other hand, we can insist that φ should follow
from (K m θ) ∪ (K m φ) since it would be compatible with the axioms of retraction. Moreover,
such a requirement is equivalent to forcing φ to be in K m θ. That is, K m φ removes so little from
K that every belief set stronger than K m φ which is obtained by removing some sentence from K,
will include φ. If K m θ is strictly included in K m φ, the same argument holds, but with the roles
of θ and φ reversed. The remaining case to consider is where K m θ 6⊂ K m φ, K m φ 6⊂ K m θ,
and (K m θ) ∪ (K m φ) is consistent. Then K m θ should remove so little from K, and K m φ
should remove so little from K, that K m θ and K m φ, when put together should yield both θ and
φ. So:

1. If (K m θ) ∪ (K m φ) is inconsistent then (K m θ) ∪ (K m φ) |= φ (by classical logic).

2. If K m φ ⊂ K m θ then K m θ |= φ or, if K m φ ⊂ K m θ then (K m θ) ∪ (K m φ) |= φ.

3. If K m θ 6⊂ K m φ, K m φ 6⊂ K m θ and (K m θ) ∪ (K m φ) is consistent, then (K m
θ)∪ (K m φ) |= θ ∧φ, or, (K m θ)∪ (K m φ) |= φ, since the roles of θ and φ are symmetrical.

Now observe that the three antecedents in 1, 2 and 3 above make up the three cases that together
are equivalent to the condition that K m θ * K m φ. That is, K m θ * K m φ iff (K m θ)∪(K m φ)
is inconsistent, or K m φ ⊂ K m θ, or K m θ 6⊂ K m φ, K m φ 6⊂ K m θ and (K m θ) ∪ (K m φ) is
consistent. So 1, 2 and 3 can jointly be restated as the following property:

If K m θ * K m φ then (K m θ) ∪ (K m φ) |= φ

which is the contrapositive of (Strong Conservativity). So (Strong Conservativity) is the Principle
of Minimal Change expressed in terms of the relationship between belief sets resulting from the
removal of different sentences from a given belief set K.

6 Conclusion

We have provided a formal study of belief change operators that do not satisfy (Inclusion), to do
justice to the intuition that dropping a belief may lead to the inclusion of others in the agent’s



corpus. We provided two models of liberation via retraction operators, σ-liberation and linear
liberation, both of which utilised a finite sequence of sentences to guide the operation of belief
removal. We showed that the class of σ-liberation operators is included in the class of linear
liberation operators, and provided axiomatic characterisations for each class. We also characterised
a number of subclasses of linear liberation, including severe withdrawal. We showed how a given
retraction operator can be transformed into either a withdrawal operator (satisfying (Inclusion))
or a revision operator. Finally we discussed a couple of justifications for the central postulate of
σ-liberation, namely (Strong Conservativity).

7 Future Work

For future work we would like to generalise the σ-liberation model. In this paper, the belief
sequences σ consisted of sentences which, intuitively, represented previous revision inputs which the
agent has received. Any previous retraction steps which might have taken place are not represented.
This means that, in this model, we are essentially restricting the domain of σ-liberation to those
belief sets K which are formed by a process of revision alone. One natural way to record retraction
steps would be to allow σ to include so-called disbeliefs γ (where γ ∈ L), as seen in [14], where γ
indicates a retraction of γ. This would also open the way for a sequence-based model of iterated
retraction10: when retracting φ we can obtain a new sequence by appending φ to the end of σ.
This new sequence is then ready for the next input. We intend a full investigation of the properties
of such a model. Other directions for further research are to consider more general models that
do not satisfy (Vacuity) as well as (Inclusion), and also to find other sequence-based constructions
which are able to model operations, such as AGM contraction and systematic withdrawal [13], that
cannot be handled with our current ones. Finally, note that in this paper we restricted ourselves to
working within a finitely generated propositional language L. This choice brought with it certain
representational advantages, such as being able to identify any belief set with a single sentence. We
would like to consider also the more generalised case involving a countable number of propositional
variables.
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