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Abstract

We look at the problem of revising fuzzy be-
lief bases, i.e., belief base revision in which
both formulas in the base as well as revision-
input formulas can come attached with vary-
ing truth-degrees. Working within a very
general framework for fuzzy logic which is
able to capture certain types of uncertainty
calculi as well as truth-functional fuzzy log-
ics, we show how the idea of rational change
from “crisp” base revision, as embodied by
the idea of partial meet (base) revision, can
be faithfully extended to revising fuzzy belief
bases. We present and axiomatise an oper-
ation of partial meet fuzzy base revision and
illustrate how the operation works in several
important special instances of the framework.

1 INTRODUCTION

The ability to rationally change one’s beliefs in the
face of new information which, possibly, contradicts
the currently held beliefs is a basic characteristic of
intelligent behaviour. Hence the question of belief re-
vision is an important question in AI. A very successful
framework in which this question is studied is the one
due to Alchourrén, Gérdenfors and Makinson (AGM)
[1, 4], with its operation of partial meet revision. One
limitation of this framework is that belief in a for-
mula is taken as a matter of all or nothing: either
the formula is believed or it is not. However, real-
life knowledge bases may well contain information of
a more graded nature. For instance we might want to
represent information about vague concepts or uncer-
tain beliefs. Likewise revision inputs may come with a
degree attached. Our aim in this paper is to examine
revision in the general setting which allows for such
different degrees, while keeping the spirit of AGM.

As a most suitable backdrop in which to work out our

ideas we choose a very general framework for fuzzy
logic due to Gerla [7]. The basic construct here is that
of an abstract fuzzy deduction system, which gener-
alises Tarski’s notion of deductive systems. Roughly,
this consists of three basic ingredients: (i) a set L
of formulas to describe the world, (i) a set W of
truth-degrees (whose precise interpretation is mostly
left open) which may be assigned to the formulas to
create fuzzy belief bases, and (%) a fuzzy deduction op-
erator D which takes as input a fuzzy base u and re-
turns another fuzzy base D(u) representing its (fuzzy)
conclusions. Sometimes a fourth ingredient is included
— a fuzzy semantics M — in which case we speak of an
abstract fuzzy logic. When W = {0,1} we find our-
selves in the usual “crisp” setting of AGM. The frame-
work has also been shown capable of capturing sev-
eral different flavours of uncertain reasoning, including
truth-functional logic and certain types of probabilis-
tic logic.

Within this fuzzy framework, the question of revision
we are interested in then takes the following form:
Given a fuzzy base u representing our current informa-
tion, how should we change u to incorporate the new
information that the truth-degree of some formula ¢
is at least a for some a € W7 In this paper we as-
sume that the object of change w is an arbitrary fuzzy
base which need not be deductively closed, i.e., possi-
bly u # D(u). Indeed, following the often referred-to
distinction made in the belief revision literature (e.g.
[13, p. 22]), our approach will be foundationalist rather
than coherentist. That is, we differentiate between
those beliefs which are “basic” or “explicit”, (u) and
those which are “merely derived” or “implicit” (i.e.,
that information in D(u) which goes strictly beyond
that contained in ).

The original AGM theory was a theory about how
to revise deductively closed sets of formulas, but the
more general case of revising arbitrary (crisp) bases
has also been studied, notably by Hansson [11, 13],
who axiomatically characterised partial meet base re-



vision. We will generalise this operation into partial
meet fuzzy base revision and give an axiomatisation.
Surprisingly, despite the increase in complexity which
admitting many truth-degrees brings, the form of the
axiomatisation is roughly the same as in the crisp case.
This shows how the principles on which partial meet
revision are based really require very little structure.
The set of truth-degrees is not even required to be
linearly-ordered — any complete, distributive lattice
will do.

The plan of the paper is as follows. In Sect. 2 we set
up the framework of abstract fuzzy logic and describe
some instances of it, including those related to truth-
functional fuzzy logics, necessity logic and probability
logic. In Sect. 3 we define partial meet fuzzy base re-
vision operators and give examples to illustrate how
these operators work for each instance of the frame-
work from the previous section. We give the axioma-
tisation of partial meet fuzzy base revision in Sect. 4.
Finally we conclude in Sect. 5.

2 ABSTRACT FUZZY LOGIC

Our first task is to formally define abstract fuzzy de-
duction systems. The following definitions are based
on [7]. As we said above, we assume L to be the set
of all formulas. We take the set W of all possible
truth-degrees to be a complete lattice, i.e., we assume
W to come equipped with a partial order <y on W
such that every A C W has both a supremum (or
join) sup(A4) and an infimum (or meet) inf(A). For
a,b € W we write a Wb for sup({a,b}) and a Ab for
inf({a,b}). Often (for instance in our examples) W
will be linearly ordered (e.g., the real unit interval).
However, in general the only additional assumption we
make about W is that it is also distributive, i.e., that
for all a,b,c € W we have a A (b Wc) = (a Ab) W(a Ac),
equivalently, a W (b Ac) = (a Wb) A(aWc).! We use Oy
and 1y to denote the minimal and maximal elements
of W.

A fuzzy belief base is then just an assignment u : L —
W of truth-degrees to the formulas. Such a piece of
information u should be understood as an under con-
straint, i.e. u(¢) = a means that the truth-degree of
¢ is at least a. We denote the set of all possible fuzzy
bases by F(L). The ordering <y induces a “fuzzy
subset” relation C on F(L) by taking, for u,v € F(L),
u C v iff u(¢p) <w v(¢) for all ¢ € L. The meaning
of this is that v carries more (or more exact) infor-
mation than w. With this definition it is easy to see
that (F(L),C) forms a complete, distributive lattice.
Given X C F(L) we shall denote the supremum and

1For another general approach to modelling uncertainty
which likewise relaxes the assumption of linearity see [10].

infimum of X under C by | | X and [ | X respectively.
We write u U v for | [{u,v} and uwMw for [ {u,v}. We
have the following, for all X C F(L) and ¢ € L,

“_| X] (¢) = sup({u(¢) | v € X})
[|—| X] (¢) = inf({u(¢) | u € X})

We use C to denote the strict part of C. The C-
maximal element of F(L), i.e., the fuzzy base which
assigns degree ly, to every formula, will be denoted
by w,. The C-minimal element of F(L), i.e., the
fuzzy base which assigns degree Oy to every for-
mula, will be denoted by ut. For a fuzzy base u
we call the set of formulas ¢ for which u(¢) # Ow
the support of u and denote this set by Supp(u). If
Supp(u) = {¢1,...,dr} is finite then we may repre-
sent u as {(¢1/a1),...,(¢r/axr)} with the interpreta-
tion that u(¢;) = a; for i = 1,..., k. We will often use
(¢/a) to denote the base {(¢/a)}. Although the sup-
port of a fuzzy base will typically be finite, the results
we describe will be valid for arbitrary w.

The tool for drawing conclusions is the fuzzy deduction
operator D : F(L) — F(L). Tt is assumed to satisfy
analogues of the three basic Tarski properties:

e u C v implies D(u) C D(v) (Monotony)
e D(D(u)) = D(u) (Idempotence)
o u C D(u) (Reflexivity)

If D(u) = uy then we say that w is D-inconsistent,
otherwise D-consistent. (We omit the “D-" if it is
clear from the context.) A (fuzzy) theory is any fixed
point of D. Another property of D, which will be
important to us, is logical compactness:

Definition 1 ([7]) Let D : F(L) — F(L) be a de-
duction operator. Then D is logically compact iff we
have D(| | X) # wuy for all X C F(L) such that (i)
u € X implies D(u) # uy, and (i) for all u,v € X
there exists w € X such that ulUv C w.

Using an order-theoretical term, the definition says
that D is logically compact iff the supremum of ev-
ery directed family of D-consistent fuzzy bases is itself
D-consistent.

We are now able to give the following formal definition:

Definition 2 An abstract fuzzy deduction system is
a triple (L, W, D) where L is a set of formulas, W is
a complete, distributive lattice of truth-degrees and D
is a logically compact fuzzy deduction operator which
satisfies (Monotony), (Idempotence) and (Reflexivity).

Sometimes (especially for our examples) it is conve-
nient to describe the deduction operator D of an ab-
stract fuzzy deduction system semantically. An ab-
stract fuzzy semantics is a subset M of F(L), such



that u; ¢ M, whose elements are called models. In-
tuitively the models represent complete descriptions of
“possible worlds”, whereas the fuzzy bases u not in M
represent incomplete knowledge. An element m € M
is a model of a fuzzy base u if u C m. We denote the set
of models of u in M by mod(u). An abstract fuzzy
semantics M yields a fuzzy deduction operator Jxq by
setting, for each u € F(L), Jaq(u) = [ |modaq(u). It
is easy to see that Juy satisfies (Monotony), (Idempo-
tence) and (Reflexivity), and also that a fuzzy base u
is Jaq-consistent iff mod g (u) # 0.

Definition 3 An abstract fuzzy logic is a quadruple
(L, W, D, M) where (L,W, D) is an abstract fuzzy de-
duction system and M is an abstract fuzzy semantics
such that D = Jaq (i.e., the “completeness theorem”
holds).

For any abstract fuzzy deduction system we can always
associate a suitable semantics: just take M to be the
set of all D-consistent theories.

2.1 CONCRETE EXAMPLES

We now give a few example instantiations of the above
framework. In each of these we take the set of formulas
to be the set of formulas Lp,op, from a propositional
language closed under the connectives =, A,V and —.
We treat 6 < ¢ as an abbreviation for (8 — ¢) A
(¢ — 0). We denote the classical logical consequence
operator of propositional logic by Cn.

2.1.1 Crisp Deduction Systems

The simplest example of a set of truth-degrees is, of
course, the case when W consists of just two elements
{0,1} standing for “false” and “true” respectively. In
this case belief bases u are “crisp”, i.e., they corre-
spond to (characteristic functions of) sets of formulas
in Lprop, and &, M, U effectively reduce to the usual
C,N,U (thus in this case we write the more usual
“¢ € u” rather than “u(¢) = 1”7 etc.). In the belief
revision literature it is customary to assume that, in
addition to (Monotony), (Idempotence) and (Reflex-
ivity), the deduction operator D satisfies the following
three rules:

o If ¢ € Cn(u) then ¢ € D(u) (Supraclassicality)
e o€ D(uU{0}) iff (8 — ¢) € D(u) (Deduction)

o If ¢ € D(u) then ¢ € D(u') for some finite v’ C u
(Compactness)

We shall call an abstract fuzzy deduction system of
the form (Lpyop, {0, 1}, D) where D satisfies the above
three properties a crisp deduction system. That D is
logically compact follows from the following observa-
tion, which is easy to verify:

Proposition 1 Let D : 2EProv — 2LProv pe g deduc-
tion operator which satisfies (Supraclassicality) and
(Deduction). Then D satisfies (Compactness) iff D
is logically compact in the sense of Definition 1.

Thus we see that, for crisp deduction systems, the
property of logical compactness collapses into the
usual notion of compactness. Note that for a seman-
tics here we could take M to consist of all the maximal
consistent theories.

2.1.2 Lukasiewicz Fuzzy Logic

In the rest of our examples we take W = [0, 1], i.e.,
the real unit interval equipped with the usual order-
ing <. Each example will differ only in the choice of
a semantics, i.e., what counts as a “possible world”,
leading to different types of deduction operator. The
first is related to infinitely many-valued Lukasiewicz
logic (see, for example [8, 15]). We take as the seman-
tics the set My of all truth-functional valuations over
Lp,op in the many-valued Lukasiewicz logic, i.e., the
set of functions m : Lpyp — [0,1] satisfying, for all
9, d) € LProp7

m(—0) = 1—m(0)
m(6 A ¢) m(0) Am(¢)
m(fv¢) = m(0)wm(p)
m(l — o) = 1AL —m(0)+m(s))

(Note that here “—” does not behave as material im-
plication.) So here the “fuzziness” arises from hav-
ing worlds with graded properties. We then take
Dk = Jmy,,.- It can be shown [15, Lemma 4.17] that
for any given fuzzy base u we have

ul (¢/a) is inconsistent iff Dy (u)(—¢) >1—a (%)

We also have the following:
Proposition 2 ([7]) D is logically compact.

For an example of a fuzzy base in this logic let z,y, z
be distinct propositional variables and consider:

ug = {(2/0.75), (x — y/0.75), (2/0.25)}.

For an example of an inference we have Dy (ug)(y) =
0.5, i.e., we infer that the truth-degree of y is at least
0.5. To see this, we have

Dk (uo)(y) = inf{m(y) | m € modp,,, (uo)}-

Hence it suffices to show that 0.5 < m(y) for all
m € mod,,, (uo), with equality holding for at least
one m. So let m € modp,, (ug). Then we have
0.75 <m(z), 0.75 < m(z — y), and 0.25 < m(z).
Unpacking the second constraint gives us
0.75 < 1A — m(x) + m(y))

which leads to  m(x) — 0.25 < m(y).



Since 0.75 < m(z) this gives us the desired 0.5 < m(y).
Furthermore, we can obtain equality here by choosing
mo € modag,,, (ug) such that mo(x) = 0.75,mg(y) =
0.5 and mg(z) = 0.25. Hence Dyyk(uo)(y) = 0.5
as required. By similar reasoning we can also show
Dk (ug)(y A z) = min{0.5,0.25} = 0.25, i.e., we infer
that the truth-degree of y Az is at least 0.25. So, by (x)
above, we know ug U (=(y A 2)/b) will be inconsistent
for any b > 0.75.

2.1.3 Necessity Logic

Our final two examples show how the framework is
also able to capture some types of non-truth-functional
belief. The first of these, which corresponds to possi-
bilistic logic [3], was described within this framework
in [6]. For the semantics we take the set My of all ne-
cessity functions over Lpyop, i.€., the set of functions
n: Lpyop — [0,1] which satisfy, for all ,¢ € L,

(N1) If 0 € Cn(0) then n(f) = 1 and n(—-0) = 0.
(N2) If (6 < ¢) € Cn(0) then n(8) = n(¢).
(N8)  n(6 A ) = n(0) An(o).

We then take Dy = Jaqy-
Proposition 3 ([6]) Dy is logically compact.

In this logic the notion of consistency is reducible to
classical propositional consistency, in that a fuzzy base
u is Dn-consistent iff Supp(u) is Cn-consistent. Also,
if w is consistent (and ¢ € Cn(()) then Dy (u)(¢) may
be determined from the values given to those formulas
which classically imply ¢ as follows:

Dy (u)(¢) =

sup{u(f1) A ... Au(bk) | ¢ € Cn({61,...,0k})}
(If ¢ € Cn(0) then clearly Dx(u)(¢) = 1.) For ex-
ample using the same fuzzy base ug as in the previous
example we get Dx(ug)(y) = 0.75 and Dn(ug)(yAz) =
0.25.

2.1.4 Probability Logic (Lower Envelopes)

Our last example is probabilistic. It is the logic of
“lower envelopes” studied in [5].2 This time we take
as a semantics the set Mp of all probability functions
over Lpyop, i.e., all functions p : Lpyep — [0, 1] which
satisfy, for all 6, ¢ € Lprop,

(P1) If € Cn(0) then p(d) = 1.

(P2) If =(6 A @) € Cn(D) then p(0V ¢) = p(0) + p().

Then every “world” contains complete information of
a random phenomena. We then take Dp = Jaq,.

Proposition 4 ([5, 6]) Dp is logically compact.

2See also [6] for some more examples of “probability-
like” logics within this framework.

A fuzzy base u then gives a lower constraint for an
unknown probability distribution. The deduction op-
erator Dp(u) improves the initial constraint. It is easy
to see (using (P2)) that Dp satisfies the property (x)
mentioned in Sect. 2.1.2. A syntactic characterisation
of Dp may be found in [6]. For an example of an in-
ference in this logic consider again the fuzzy base ug
from the previous examples. Then Dp(ug)(y) = 0.5,
i.e., we infer that the probability of y is at least 0.5.
To see this, we have

Dp(uo)(y) = inf{p(y) | p € modmy (uo)}-

Hence it suffices to show 0.5 < p(y) for all p €
mod i, (ug), with equality holding for at least one
p. To see this, first note that, using the properties of
probability functions, we get p(z) = p(zAy)+p(xA—y)
and p(z — y) = 1-p(=(z — y)) = 1—p(xA~y). Hence
we may rewrite the first two constraints on p as

0.75 < p(z Ay) + p(x A —y) and p(z A —y) < 0.25.

The first constraint gives 0.75 — p(x A —y) < p(x A y).
Then using this with the second constraint gives 0.5 <
p(xz A y). Since p(z Ay) < p(y) for any probability
function we then get 0.5 < p(y) as required. We obtain
equality by choosing any py € mod g, (up) such that
po(x A —y) = po(—x A —y) = 0.25 and po(x Ay) = 0.5.

Note here that the answer for Dp (up)(y) coincides with
that for Dy (uo)(y) in the Lukasiewicz example above.
In general, though, the two deduction operators will
give different results.> For example it can be shown
that, in contrast to Dk (ug), we get Dp(ug)(yAz) = 0.

3 FUZZY BASE REVISION

Now we have set up the basic framework we can state
formally the question of revision we are interested in:

Question. Assume a fixed abstract fuzzy deduction
system (L, W, D) as background. Then given a fuzzy
belief base u (representing our current (fuzzy) infor-
mation) and a pair (¢/a) € L x W (representing the
new information that the truth-degree of ¢ is at least
a), how should we determine ux(¢/a) which represents
the revision of u to consistently incorporate the new
information (¢/a)?

The special case of crisp deduction systems is the case
which is considered in the AGM framework. The idea
there is to decompose the operation into two main
steps. First, the initial (crisp) base u is altered if neces-
sary so as to “make room” for, i.e., become consistent
with, the incoming crisp formula ¢. This is achieved
by making « deductively weaker (contraction). Here

3See also [9)].



we should adhere to the principle of minimal change,
according to which this weakening should be made as
“small” as possible. Then the new formula is simply
joined on to the result (expansion). In partial meet
revision [1, 11] the idea is to focus for the first step
on those subsets of u which are consistent with ¢ and
which are mazrimal with this property. Then, a cer-
tain number of the elements of this set are somehow
selected as the “best” or “most preferred” and then
their intersection is taken. The result of this intersec-
tion is then expanded by ¢. We would like to generalise
this procedure to apply to an arbitrary abstract fuzzy
deduction system. In other words we want to use the
following procedure to obtain u * (¢/a):

1. Form the family of mazimal fuzzy subsets of u
which are consistent with (¢/a). We denote this
family by u_L (¢/a).*

2. Select a subset of these:

Y(ul(¢/a)) Cul(g/a)

3. Form the meet of the elements of this subset:

[M(ul(g/a)).

4. Join (¢/a) to the result:

ux(¢/a) = ([1y(uLl(¢/a))) U(¢/a).

We now fill in the details of the above sketched proce-
dure. First we formally define u L (¢/a):

Definition 4 Letu € F(L) and (¢p/a) € LxW. Then
ul (¢/a) is the set of elements of F(L) such that v’ €
ul(¢/a) iff 1) v C u, (ii) v’ U (¢/a) is consistent,
and (iil) for all v’ C u, if v’ T u” then v’ U (¢/a) is
1nconsistent.

Note in particular that if u Ul (¢/a) is consistent then
ul (¢/a) = {u}, while if (¢/a) is inconsistent then
ul(¢p/a) = . We need to know that if (¢/a) is con-
sistent then v L (¢/a) is non-empty. In fact this is the
main place where the property of logical compactness
of D is required. Under the additional assumption of
Zorn’s Lemma, it enables us to show the following:

Proposition 5 Let v € F(L). If v Cu and vU (¢/a)
is consistent then there exists w € u L (¢/a) such that
v Cw.

Proof (Sketch). TFirst consider the set X = {u €
F(L) | v Cuw Cu, v'U(¢p/a) is consistent}, par-
tially ordered by C. With the help of logical com-
pactness, it can be shown that, for every (non-empty)
totally-ordered subset Y of X, the element | |Y is an
upper-bound for Y in X. (If Y is empty then v is an
upper-bound for Y in X.) Applying Zorn’s Lemma,
we then deduce the existence of a maximal element w

“In the (crisp) belief revision literature the talk is usu-
ally (and equivalently) of the set of “maximal subsets which
fail to imply —¢”, which is denoted by w_L —¢. We prefer
the slightly different notation which does not refer to any
connectives.

of X. It can then be shown that for any such w we
have both w € u L (¢/a) and v C w. O

Taking v = uT in the above proposition gives us the
desired non-emptiness for u L (¢/a). We now define
selection functions.

Definition 5 Let u € F(L). A selection function for
w is a function y such that for all (¢/a) € LxW, (i) if
ul(¢/a) # 0 then O # v(uL(p/a)) Cul(d/a), and
(ii) if uLl(¢d/a) =0 then y(uL(¢/a)) = {u}.
Intuitively, selection functions reflect the resistance to
change of the items of information in u. Given u €
F(L) and a selection function v for w we then define
a revision operator %, for u as follows:

wk, (6/a) = ([r(uL (9/a))) U (6/a)

Definition 6 Let u € F(L) and let x be an operator
foru. Then % is an operator of partial meet fuzzy base
revision (for u) iff x = %, for some selection function
~ for u.

The following proposition is reminiscent of the Harper
Identity from crisp revision [4]. It is used later in the
proof of Theorem 1.

Proposition 6 Let v be a selection function for u.
Then u (uxy (¢/a)) =1y(ul(¢/a)).
Proof (Sketch). For the “C” direction first note that

ull (uxy (¢/a)) = (w1 ([y(uL(9/a))) U (ull(¢/a))
(using the distributivity of F(L)). Hence it suffices

to show both u M1 ([y(uL (6/a))) C [(u L (¢/a))
and u M (¢/a) C [y(uL(¢/a)). The former clearly
holds. The latter too if (¢/a) is inconsistent (since
then y(u L (¢/a)) = {u}), while if (¢/a) is consistent it
can be shown that uM(¢/a) C o' for all v’ € u Ll (¢/a),
which then suffices (since v(ul(¢/a)) C ul(¢/a)).
For the “J” direction we need both []vy(u L (¢/a)) C u
and [Ty(uL(6/a)) T (M1(uL(¢/a))) U (6/a). The

latter clearly holds, while for the former we have

Y(ul(p/a)) # 0 and so, given v’ € y(ul (¢/a)), we
have [1v(u L (¢/a)) C v C u as required (since v’ C u
by definition of u 1 (¢/a)). O

Thus ulM(u* (¢/a)) may be equated with the result of
“contracting” u to make room for the new item (¢/a).

3.1 EXAMPLES

Let us give an example of partial meet fuzzy base re-
vision “in action” for each of the instantiations of the
framework we gave in Sect. 2.1.

3.1.1 Crisp Deduction Systems

For crisp deduction systems the operation reduces to
the usual partial meet base revision from [11]. For



example suppose u = {z,z — y,z} and suppose we
receive the new information —(y A z) (it is understood
that all the stated formulas have degree 1). Then we
get

ul(=(yAz))= {{J},CIL‘ - y}’ {x’z}v {l‘ - y,z}}

Suppose our selection function v selects the first two
subsets above: y(u L (=(yAz)) = {{z,z — y}, {x, z}}.
Then we get ux, =(y A z) = (Ny(uL(=(yAz)))U

{=lyn2)}={z,~(yA2)}
3.1.2 Lukasiewicz Fuzzy Logic

Suppose ug is given as in Sect. 2.1.2, ie., ug =
{(z/0.75), (x — y/0.75),(2/0.25)}. Then suppose we
receive the new information (=(yAz)/1), i.e., it is def-
initely not the case that y and z are true together. We
know from the remark at the end of Sect. 2.1.2 that
ug is inconsistent with this new information. In or-
der to make wugy consistent with (=(y A z)/1) we need
to modify it so that Dyyk(uo)(y A z) = 0. This can
be achieved either by holding the truth-degrees of z
and x — y fixed while lowering that of z to 0, or by
holding the truth-degree of z fixed and lowering that
of either z or x — y (or both) just enough to ensure
Diux(uo)(y) = 0. Precisely, we can show that

uo L (=(y A 2)/1) ={{(x/0.75), (x — y/0.75)}} U
{u' CTug| 0.25 < u'(z),
vz —y)=1-1u(x),

w'(z) = uo(2)}.

Suppose we prefer to keep the information item
(2/0.75), and that this is reflected by applying the
selection function

V(oL (=(y A2)/1)) ={u' €uoL(=(yAz)/1) |
u'(z) = up(x)}.

Then, using u* as shorthand for ug*, (=(y A z)/1), we
have u*(=(y A z)) = 1, while for 8 # —(y A z) we have

w(0) = [T L=y A2)/1)] ©)
= inf{u'(6) | W' € y(uo L (~(y A 2)/1)}.

Hence, as our final result we get ug x4 (—(y A 2)/1) =
{(x/0.75), (x — y/0.25), (~(y A z)/1)}.

3.1.3 Necessity Logic

Let ug be as in the previous example and suppose we
get the new information (=(y A z)/0.25). Then, since
Supp(up U (—(y A 2)/0.25)) = {z, x — y, z,~(y A z)}
is C'n-inconsistent we know ug Ll (=(y A 2)/0.25) is in-
consistent. Finding the fuzzy subsets of uy which are
maximally consistent with (—=(y A z)/0.25) essentially

reduces to finding the crisp subsets of Supp(ug) which
are maximally Cn-consistent with —(y A z):

up L (—(y A2)/0.25) = {{(z — y/0.75), (2/0.25)},
{(2/0.75), (2/0.25) },
{(z/0.75), (x — y/0.75)} }

Hence so far this doesn’t look much different from
the case of crisp deduction systems. The only dif-
ference is that now not all the formulas have de-
gree 1. We have the option of using this extra ex-
pressiveness to actually help define a selection func-
tion, perhaps according to a principle that formu-
las with greater degrees should be kept whenever
possible. Indeed this is the approach usually taken
in works on belief revision within possibility theory
such as [2]. For instance in the above example we
could prefer to throw out the information item with
the lowest degree, i.e., (2/0.25). This would be re-
flected by using a selection function for ug such that:
Y(ttg L (—(y A 2)/0.25)) = {{(2/0.75), ( — y/0.75)}}
Then

[y (uo L (=(y A 2)/0.25))) = ~(uo L (=(y A 2)/0.25))

and so up *y (=(y A 2)/0.25) = {(x/0.75),(z —
y/0.75), (—~(y A 2)/0.25)}.5 We remark, however, that
there is nothing to stop us from defining v indepen-
dently of the degrees.%

3.1.4 Probability Logic (Lower Envelopes)

For a probabilistic example let us again use the base
ug from earlier and suppose this time we get new infor-
mation (—y/0.75) which, since as we saw in Sect. 2.1.4
Dp(uo)(y) > 0.25, is inconsistent ug. Then it can be
shown that

uo L (—y/0.75) = {v' Cug | 0.5 < u/(x),
w(x —y) =1.25 —u/(2),
' (2) = uo(2)}

Suppose our selection function « is defined by
y(u L (=y/0.75)) = {uv' € u L (-y/0.75) | 0.6 < u'(x)}

reflecting a certain “level of security” behind the item
of information (2/0.75): we are not willing to choose
any subset of ug in which the probability of x falls
below 0.6. Then, using u* now as shorthand for
up *~ (—y/0.75) we have u*(—y) = 0.75, while for

°For a related approach see [16].

5In fact the question of the precise nature of the rela-
tionship between degrees of confidence (i.e., truth-degrees
for us) and degree of resistance to change is one of the open
philosophical problems in belief revision recently posed by
Hansson [12].



0 # —y we have

w(0) = [Tt (w/0.75)] )
inf{u'(0) | v € y(uo L (-y/0.75))}.
Hence ug %+ (—y/0.75) =

{(z/0.6), (x — y/0.5), (2/0.25), (-y/0.75)}.

4 CHARACTERISING PARTIAL
MEET FUZZY BASE REVISION

In this section we axiomatically characterise the class
of partial meet fuzzy base revision operators. It turns
out that the class is characterised by the following five
postulates, each of which generalises a postulate from
the corresponding axiomatisation from the crisp case
[11]. On the right we list the usual names.

(F1) a <w [ux(¢/a)](¢)

(F2) ux(¢/a) is consistent if (¢/a) is consistent
(Consistency)

(Success)

(F3) ux(¢/a) Eull(¢/a)

(F4) Forall0 e L, be W, if b Ly [u* (¢/a)](0)
and b <y u(f) then there exists v’ such that
ux(¢p/a) Cu' Cull(g/a), v is consistent
and v/ U (6/b) is inconsistent (Relevance)

(Inclusion)

(F5) If, for all v C u, we have v U (¢/a) is consistent
iff vU (¢'/a’) is consistent, then u M (u * (¢/a))
=ull(ux(¢'/a)) (Uniformity)

(F1) says that the revision is successful, i.e., that after
revision by (¢/a), the formula ¢ is assigned a truth-
degree of at least a. (F2) requires the result of revision
to be consistent, provided the input is itself consistent.
(F3) says that the revised base should not contain
more information than that obtained by simply joining
the original base with the new information. (F4) seeks
to minimise unnecessary loss of information. Roughly,
it expresses that if, for every consistent fuzzy base v’
lying between u % (¢/a) and u U (¢/a), it is possible
to raise the truth-degree of  from u/(6) to b without
incurring inconsistency, then there is no reason for the
revised truth-degree of 8 to fall below b. Finally for
(F5), first note that uM (ux(¢/a)) can be understood
as that information in « which is retained in u* (¢/a).
Hence (F5) says that if two different inputs are con-
sistent with precisely the same fuzzy subsets of u then
they remove the same information from u. We now
give the main result of the paper, which generalises
the characterisation given in [11] for crisp deduction
systems.

Theorem 1 Let w € F(L) and x be an operator for

u. Then x is an operator of partial meet fuzzy base
revision for u iff * satisfies (F1)—(F5).

Remarks on the proof. The proof is based on that of
the special crisp case in [11]. The main difficulty arises
from the unavailability in our more general case of the
(Deduction) property. Also, it turns out that the only
properties of D which are needed are logical compact-
ness and the following weakening of (Monotony):

If v is consistent and « T v then u is consistent.

This last remark also applies to propositions 5 and 6.7

The next proposition gives us some more rules which
can be derived from (F1)—(F5).

Proposition 7 Let u € F(L) and = be an operator
for w which satisfies (F1)—(F5). Then x also satisfies
the following properties:

(F6) Iful(¢/a) is consistent then

ux(¢/a) =ul(¢/a)
If u is consistent and a <y u(¢@) then

ux(¢/a) =u

If u(¢) <w a then [u* (¢/a)](@) = a
If (¢/a) is inconsistent then

ux(¢/a) =ul(¢/a)
(F10) If D(¢/a) = D(¢'/a’) then

ull(ux(¢/a)) =ull(ux(¢'/a’))

(F6) is the “vacuity” property which says that if the
new information (¢/a) is consistent with the current
information u, then the new base is formed by sim-
ply adding (¢/a) to u. As a consequence of this we
get (F'7), which says that if u is consistent and ¢ is al-
ready explicitly assigned a truth-degree in u of at least
a then revising by (¢/a) leaves the base unchanged.
(F8) says that if u(¢) <w a then ¢ is assigned a
truth-degree in the new base of precisely a. For the
common case when W is linearly ordered, (F7) and
(F8) together give:

(F7)

(F8)
(F9)

If u is consistent then [ux (¢/a)](¢) = u(¢) Va.

We remark, however, that it can be shown partial meet
fuzzy base revision operators do not satisfy this prop-
erty in general. (F9) states that if the new informa-
tion is inconsistent then the new base is again formed
by just adding it to the current information. Finally,
(F10) says that revising by information which is “log-
ically equivalent” removes the same information from
u. The proof of Prop. 7 requires only the same prop-
erties of D as Theorem 1, with one small exception:
the derivation of (F10) requires all three of the (gen-
eralised) Tarski properties.

"For the crisp case, it is already noticed in [14, Sect. 3]
that the only properties required of D are (Compactness)
and (Monotony) (which, in the presence of (Deduction), is
actually equivalent to its above weakening).



5 CONCLUSION

We have considered the question of fuzzy belief base re-
vision within Gerla’s general framework for fuzzy logic.
We have defined and axiomatised the operation of par-
tial meet fuzzy base revision, which generalises the op-
eration of partial meet base revision from the usual
crisp case. The fact that we obtained this axiomati-
sation with such relatively weak restrictions shows on
the one hand how the ideas of rational belief change
are general enough to be applied to reasoning under
vagueness or uncertainty. On the other hand, it con-
firms that the types of fuzzy systems covered by our
abstract setting are indeed appropriate for modelling
the human capacity of making conclusions from uncer-
tain or vague premises. We have given some examples
which show how the operation works in some specific
instances of the framework, including those related to
Lukasiewicz fuzzy logic and probability logic.

In this paper the question of base revision has been
investigated from a very high position on the abstrac-
tion ladder, with only a handful of properties assumed
of the basic primitives. We have shown that it is nev-
ertheless possible to formulate basic properties of base
revision operators. We would like to think of (F1)-
(F5) as the absolute minimal core properties which
any base revision operator should satisfy. However,
as we move down the abstraction ladder, we fully ex-
pect to be able to say more. Furthermore, as the dif-
ferences between the various instantiations of our ab-
stract framework then come into focus, such as those
between truth-functional logic and uncertainty calculi
(e.g. probability logic), we also expect to be able to an-
swer another important question: are there postulates
suitable for revision in one setting which are unsuitable
in another? This will be left for future work, as will the
consideration of postulates which govern the revision
of a base by different, but related inputs. What, for
example (assuming we work in Lp,op), is the connec-
tion between u * (¢/b) and ux (0 A ¢/b)? Also in this
category would be some property of robustness, i.e.,
the idea that small changes in the degree a of the re-
vision input (¢/a) should cause only small changes to
ux(¢/a) (particularly relevant if W = [0, 1]). Probably
the fulfillment of conditions like these by partial meet
fuzzy base revision operators will require some restric-
tion on the selection function . Some preliminary in-
vestigations into the latter suggest we get robustness if
we additionally restrict to continuous truth-functional
semantics. Finally we would also like to study theory
revision in this framework.
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