
Algorithms for Basic Compliance Problems

Silvano Colombo Tosatto∗, Marwane El Kharbili∗, Guido Governatori†,Pierre Kelsen∗, Qin Ma∗, Leendert van der Torre∗
∗University of Luxembourg, Luxembourg

†NICTA, Australia

Abstract—The present paper focuses on the problems of
verifying compliance for global achievement and maintenance
obligations. We first introduce the elements needed to identify and
study compliance to these two classes of obligations in processes.
Additionally, we define procedures and algorithms to efficiently
deal with the identified compliance problem. We finally show that
both algorithms proposed in the paper belong to the complexity
class P.

I. INTRODUCTION

Compliance initiatives are becoming more and more impor-
tant in enterprises with the increase of the number of regulatory
frameworks explicitly requiring businesses to show compliance
with certain constraints. These constraints are expressed as
regulations in the form of obligations, prohibitions and/or
permissions, and documented in laws, contracts, norms and
standards or any other type of guidelines (e.g., internal security
directive documents).

Most compliance solutions are ad hoc solutions and typi-
cally are time consuming to implement and to maintain. The
authors of [12] carried out a survey and a comparative analysis
of compliance solutions proposed in research on regulatory
compliance management from the perspective of enterprise
modeling. [17] classifies compliance in both preventive and
detective activities. Auditing is a typical example of a detective
activity. Preventive solutions, on the other hand, consider the
activities to be done to achieve business objectives and their
interactions with and the impact on them of the obligations
and prohibitions imposed on a business by a normative frame-
work. The proposal in [8] advances a compliance-by-design
methodology. The methodology is based on the use of business
process models to describe the activities of an enterprise and
to couple them with formal specifications of the regulatory
frameworks regulating the business. Business process models
describe the activities to be done, and the order in which the
task can be executed. Several approaches to handle compliance
and to formalize normative requirements, based on different
logical formalisms have been proposed (see for example [6],
[16], [4]).

In [3] it is shown that, in general, even for ‘well behaved’
classes of processes (i.e., structured processes), checking
whether a process is compliant with a (formalized) regulation,
is computationally hard. The aim of our work is not to propose
yet another formalism for business process compliance, but

This work is supported by the National Research Fund, Luxembourg
(MaRCo-C09/IS/01)

NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of Excellence program.

to propose an abstract framework that is able to identify
classes of compliance problems for which efficient solutions
are possible. In this paper, we propose two efficient algorithms
to deal with the most basic compliance problem: verifying the
compliance of well-structured processes against obligations in
the simplest form. The type of obligations we consider in this
paper are in force during the whole execution of processes.
Moreover, advanced concepts such as contrary-to-duty obliga-
tions (CTDs) [15], [10], i.e., obligations in force after some
other obligations have been violated, are not tackled.

The two proposed algorithms can be reused as basic build-
ing blocks in in more comprehensive compliance frameworks
to tackle more complex compliance problems in an efficient
way thanks to their low computational complexity.

The rest of the paper is structured as follows: Section 2 de-
fines the compliance problem by introducing the definitions of
processes and obligations. Section 3 describes the algorithms
and discusses their complexity. Section 4 concludes the paper.

II. BACKGROUND

The scope of this paper is to decide wether a process is
compliant with a given global obligation. In this section we
formally describe processes and global obligations.

A. Processes

A process models a collection of methods to perform an
activity. For instance an activity can be preparing coffee, a
process modeling such activity would comprehend many ways
to prepare coffee, such as using lyophilized coffee, brewing it,
etc.

A process is composed of tasks and coordinators. Tasks
represent the actions that can be done during the execution
of a process. For instance considering the process that models
how to prepare coffee, an action can be to heat the water.
Coordinators are used to define the valid alternative executions
of a process. For instance coordinators can define that a
certain task has to be done before another one or which tasks
are mutually exclusive. Arrows connecting the elements of a
process identify a general order in which the elements can be
executed.

To represent a process we use a fragment of BPMN1, a
standard business process modeling notation. The fragment
considered uses only AND and XOR coordinators in addition
to start and end. The AND coordinator is used to coordinate

1Business Process Model Notation, Version 2.0, http://www.omg.org/spec/
BPMN/2.0



tasks which can be concurrently executed. The XOR is used
to define which tasks are mutually exclusive. AND and XOR
coordinators consist in blocks of tasks within the process which
are enclosed between two coordinators of the same type.

Notice that the approach of this paper is restricted to
structured processes. A process is structured if it consists of
hierarchically nested blocks as depicted by Definition 1, which
is similar to the one used by Kiepuszewski et al. [13]. While
not all processes are structured, structured processes are a
substantial class of real-life processes. According to [14] 406
of the 604 processes in the SAP reference models [11] are
structured. In addition [14] identifies conditions under which
unstructured processes can be transformed into structured ones,
and proposes an algorithm for the transformation. They report
that 78 of the unstructured processes in the SAP reference
model can be converted into behaviorally equivalent structured
process models.

Definition 1 (Process): A structured business process P is
a business process generated by the following grammar given
in the format of an graphical extension of BNF (with the
vertical lines indicating alternative for the right hand side):

::= 

::=

……

……

……

t

E

E1

E1

E1

E

Ek

Ek

Ek

P start E end

tE

| SEQ(E1, . . . , Ek)

| AND(E1, . . . , Ek)

| XOR(E1, . . . , Ek)

::= 

::=

P

Task block

SEQ block

AND block

XOR block

Structural business process

Process block

The coordinator , , ,{ }is called start and the coordinator, , ,{ }
is called end. The coordinator, , ,{ }is called ANDsplit in
case of multiple outgoing arrows and ANDjoin in case of
multiple incoming arrows. A pair of ANDsplit and ANDjoin
coordinators groups a set of sub-blocks indicating a logical
relationship to activate all the sub-blocks concurrently. Finally,
the coordinator, , ,{ }is called XORsplit in case of multiple
outgoing arrows and XORjoin in case of multiple incoming
arrows. A pair of XORsplit and XORjoin coordinators groups
a set of sub-blocks indicating a logical relationship to activate
exactly one of the sub-blocks, chosen arbitrarily.

We assume that all the tasks in a structured business
process carry a distinct identity that constitutes a key part
of the label of a task. Therefore, a task t can directly be
referenced by its label t. Similarly, (process) block identities
are also distinct hence a block E can directly be referenced
by its label E. As a consequence, for simplicity, we also
allow a textual way to reference the graphical representation
of structured business processes.

Example 1: In Fig. 1 we provide an example of a process
containing four tasks labeled t1, . . . , t4. Within the process it

is shown an XOR block containing in different branches the
tasks t1 and t2. The XOR block is nested within an AND
block, forming one of its branches and task t3 forming the
other one. The AND block is preceded by the start coordinator
and followed by task t4 which in turn is followed by the end
coordinator.

t4

t3

t1

t2

Fig. 1. Example of a process

Given a process modeling an activity, an execution of such
a process represents one way to perform it. An execution
is a valid serialization of a subset of tasks composing the
process. A serialization is considered valid if it starts from
the start coordinator and terminates at the end. In addition
a valid serialization has to comply with the semantics of the
coordinators and the connections between the tasks.

A process is defined as P = start E end. An execution
of P is equivalent to executing the block E within start and
end. Thus we will provide the formal semantics for executing
blocks which can be used for process execution as well.

Definition 2 (Block Execution): A process block E can be
serialized into a set of finite sequences of tasks , written Σ(E),
defined by the following structural recursion. We call each
sequence in Σ(E) an execution of E, ranged over by ε.

1) E = t: Σ(E) = {(t)};
2) E = SEQ(E1, . . . , Ek): Σ(E) = {ε1; . . . ; εk |

ε1 ∈ Σ(E1), . . . , εk ∈ Σ(Ek)}, where ; stands for
sequence concatenation.

3) E = XOR(E1, . . . , Ek): Σ(E) = Σ(E1) ∪ . . . ∪
Σ(Ek);

4) E = AND(E1, . . . , Ek): Σ(E) = {(t1, . . . , tn)} such
that

a) ∀i, 1 ≤ i ≤ k, ∃εi ∈ Σ(Ei) such that
{t1, . . . , tn} =

⋃
1≤i≤k Tasks(εi)

b) ∀Ei ∈ E = AND(E1, . . . , Ek), th, tj ∈
Ei|th < tj → ∀ε ∈ Σ(E), th > tj .

Namely Σ(E) is the set of sequences each of which
merges a sequence of Σ(E1), . . . , and of Σ(Ek).
Merging a set of sequences gives rise to a sequence
that includes all the elements of the operand se-
quences. Moreover, the ordering in the result se-
quence should be compatible with the ordering in the
operand sequences.

In an arbitrary process and its possible executions. If the
process conforms with Definition 1, then a task belonging to
the process appears in at least one of its executions. This means
that each task contained in a process has the possibility to be
executed as stated in the following lemma.



Lemma 1 (Block Execution): Given a process block E and
a task t in E, ∃ε ∈ Σ(E) such that t ∈ ε.

Example 2: Taking into account the process in Fig. 1 as
P = start E end. We have that Σ(E) = {ε1, ε2, ε3, ε4} where
ε1 = (t1, t3, t4), ε2 = (t2, t3, t4), ε3 = (t3, t1, t4) and ε4 =
(t3, t2, t4). Σ(E) contains the four possible executions of the
process P . An execution not contained in Σ(E), like ε5 =
(t3, t4, t1), is not a valid execution of P . In this particular
case one of the reasons why ε5 is not a valid execution is
because after t4 the task t1 is executed, which is not possible
because t1 belongs to an XOR block nested in an AND block
that precedes the task t4 in a sequence block.

The state of the process changes while executing the tasks.
We represent the state of a process as an incomplete consistent
set of literals. Given a language, a set is called incomplete if
there exists a literal of the language such that neither literal
nor its complement belongs to the set.

Definition 3 (Consistent Literal Set): Given a literal l, let
l̃ be its complement. A set of literals L is consistent if and
only if it does not contain l and l̃ at the same time for every
literal l ∈ L.

Example 3: In a language of literals containing {α, β, γ},
the following states: L1 = {α, β̃}, L2 = {α̃, β̃, γ}, L3 =
{α, α̃, β}. L1 is an incomplete state because it does not contain
either γ or its complement. L1 is also consistent because it
does not contain a literal and its complement. L2 is a complete
state because it contains all the literals or their complement
belonging to the alphabet and L3 in inconsistent because it
contains both α and α̃.

Executing a task can change the current state of the process.
Such changes depend on a consistent set of literals associated
to the task being executed. We refer to a task with an associated
set of literals as annotated task. The set of literals of an
annotated task indicates the postconditions that have to hold
after the task is executed. A process containing annotated tasks
is called an annotated process.

Definition 4 (Annotated Process): An annotated process is
a pair: (P, ann), where P is a process and ann : T → 2L is a
function from the set T of P to consistent sets of literals of a
language L.

Example 4: Fig. 2 resumes the previous example shown
in Fig. 1 by including annotations for its tasks. We can see
that after executing task t1, the literal a has to hold in the
successive state. Annotations are not limited to single literals:
tasks t2 and t3 are both annotated by multiple literals.

t4

t3

t1

t2

{a}

{b,c}

{c,d}

{ a }~

Fig. 2. Example of an annotated process

The execution state of a process has to be kept consistent.
This means that after the execution of an annotated task, the
literals in the set associated to such task must hold in the state
but the state has to be kept consistent. To allow such behavior,
before updating the current state we remove from it the literals
which could cause inconsistencies with the ones introduced by
the task execution. After this step the state can be updated by
including the literals in the set of the annotated task. Being
the set of literals introduced consistent by definition, the result
is still a consistent set.

We define an operator to update the state of the process
following the postulates of AGM belief revision theory [1].

Definition 5 (Literal set update): Given two consistent
sets of literals L1 and L2, the update of L1 with L2 is a set
of literals defined as follows:

L1 ⊕ L2 = L1 \ {l̃ | l ∈ L2} ∪ L2

Example 5: This example shows how the state of a process
is updated after executing a task. Let L1 = {a, b}, L2 =
{a, b, c} and L3 = {c̃} be sets of literals. In case of L1 ⊕ L3

the result is the set {a, b, c̃} which represent the union of L1

and L3. Differently if we consider L2⊕L3 the result is again
{a, b, c̃} but this time the result in not equivalent to L2 ∪ L3

because L3 contains c̃ that is the complement of one of the
literals in L2. The literal c is discarded from L2 before joining
it with L3 so that the result is a consistent set. We can notice
that ⊕ is not commutative because in the case L3 ⊕ L2 the
result would be {a, b, c}.

During one of its possible executions, a process typically
goes through several states. Each of these states can be
associated to the execution of one of the annotated tasks
belonging to the execution. We call a trace such sequence of
states and tasks.

Definition 6 (Trace): The trace θ corresponding to an ex-
ecution ε = (t1, . . . , tk) of an annotated process (P, ann) is
a finite sequence of pairs of the form ((t1, L1), . . . , (tk, Lk)),
where L1, . . . , Lk are sets of literals such that:

1) L1 = ann(t1);
2) Li+1 = Li ⊕ ann(ti+1), for 1 ≤ i < k.

We write Θ((P, ann)) to denote the set of traces of an
annotated process, and let θ range over it.

Lemma 2 (Trace): Traces and execution of a process are
in one to one correspondence.

Example 6: This example shows the traces of the anno-
tated process (P, ann) illustrated in Fig. 2. In the following
table we show for each execution of P the corresponding trace.
Each trace is represented as a sequence of pairs where every
pair represents the task executed and the state holding after its
execution.

execution trace
(t1, t3, t4) ((t1, {a}), (t3, {a, c, d}), (t4, {ã, c, d}))
(t2, t3, t4) ((t2, {b, c}), (t3, {b, c, d}), (t4, {ã, b, c, d}))
(t3, t1, t4) ((t3, {c, d}), (t1, {a, c, d}), (t4, {ã, c, d}))
(t3, t2, t4) ((t3, {c, d}), (t2, {b, c, d}), (t4.{ã, b, c, d}))



B. Obligations

A global obligation is an obligation that holds from the
start till the end of a process. There are two different types
of global obligations: achievement and maintenance. We use a
subset of Process Compliance Logic (PCL) [7] to specify the
global obligations.

Definition 7 (Global Obligations): Given a literal l as the
condition of a global obligation O, we represent the two types
of obligations as follows:

O ::= Oa(l) Achievement Obligation
| Om(l) Maintenance Obligation

A trace is said to fulfill (or be compliant to) a global
obligation in the following sense:

• For achievement obligations: the condition of the
obligation has to be verified in at least one state of the
trace between the start and the end. An achievement
obligation is violated if no state before the end of the
trace satisfies the condition.

• For maintenance obligations: the condition of the
obligation has to be verified in every state between
the start and the end of the trace. A maintenance
obligation is violated as soon as a state does not verify
the condition.

Example 7 (Achievement Obligation): In a scenario where
a costumer dines in a restaurant, there is the obligation that
the bill has to be payed before leaving.

Example 8 (Maintenance Obligation): While accessing
secure data there is the obligation to have the proper
credentials for the whole period while accessing the data.

Definition 8 (Global Obligation Fulfillment): Given a
global obligation O and a trace θ = ((t1, L1), . . . , (tk, Lk)),
θ fulfills O (θ ` O) iff:

• O = Oa(l): θ ` Oa(l) iff ∃Li, 1 ≤ i ≤ k|l ∈ Li.

• O = Om(l): θ ` Om(l) iff ∀Li, 1 ≤ i ≤ k|l ∈ Li.

C. Process Compliance

Checking if a process is compliant with an obligation can
return three different results. A process is fully compliant if
every trace of the process is compliant with the obligation. A
process is partially compliant if there exists a trace compliant
with the obligation. If none of the traces of a process are com-
pliant with the obligation, then the process is not compliant.

Definition 9 (Process Compliance): Given an annotated
process (P, ann) and a global obligation O
• Full compliance (P, ann) `F O iff
∀θ ∈ Θ((P, ann)), θ ` O.

• Partial compliance (P, ann) `P O iff
∃θ ∈ Θ((P, ann)), θ ` O.

• Not compliant (P, ann) 6` O iff
¬∃θ ∈ Θ((P, ann)), θ ` O.

III. ALGORITHMS AND COMPLEXITY

In this section we present the algorithms to verify the
compliance of a process with respect to a global obligation. We
design two algorithms, one for each type of global obligation.

A. Algorithm for Global Achievement Obligations

The algorithm for achievement obligations uses the func-
tion Task Removal. This function is used to remove a set of
tasks from a process. By removing some tasks, the executions
that contain that task are no longer allowed. In some cases by
removing one or more tasks from a block it is possible that
no executions remain available, if this is the case the function
does not return a process block but ⊥.

Definition 10 (Task Removal): Given a process P =
start E end and a set of tasks T , task removal R(E, T )
returns either a new process block E′ or ⊥ as fol-
lows:

1: if E = t then
2: if t ∈ T then
3: return ⊥
4: else
5: return E
6: end if
7: end if
8: if E = SEQ(E1, . . . , Ek) then
9: if ∃i, 1 ≤ i ≤ k such that R(Ei, T ) = ⊥ then

10: return ⊥
11: else
12: return SEQ(R(E1, T ), . . . , R(Ek, T ))
13: end if
14: end if
15: if E = XOR(E1, . . . , Ek) then
16: if ∀i, 1 ≤ i ≤ k, R(Ei, T ) = ⊥ then
17: return ⊥
18: else
19: if ∃!i, 1 ≤ i ≤ k such that R(Ei, T ) 6= ⊥ then
20: return R(Ei, T )
21: else
22: return XOR(R(Em1

, T ), . . . , R(Emn
, T ))

∀Emj
∈ {E1, . . . , Ek}|R(Emj

, T ) 6= ⊥
23: end if
24: end if
25: end if
26: if E = AND(E1, . . . , Ek) then
27: if ∃i, 1 ≤ i ≤ k such that R(Ei, T ) = ⊥ then
28: return ⊥
29: else
30: return AND(R(E1, T ), . . . , R(Ek, T ))
31: end if
32: end if

Lemma 3 (Task Removal): Given a process block E and a
set of tasks T in this block,

1) R(E, T ) = ⊥ iff ∀εi ∈ Σ(E), εi ∩ T 6= ∅;
2) otherwise, R(E, T ) = E′ where:

a) Σ(E′) ⊆ Σ(E);
b) ∀εi ∈ Σ(E), εi ∩ T = ∅ iff εi ∈ Σ(E′), and

∀εi ∈ Σ(E′), εi ∩ T = ∅.
In other words: E′ contains exactly the traces of E that do

not have tasks in T .

Algorithm 1: Given an annotated process (P, ann)
and a global achievement obligation Oa(l), this
algorithm returns whether (P, ann) is compliant with
Oa(l).



1: Suppose P = start E end
2: if ∀t in E, l 6∈ ann(t) then
3: return (P, ann) 6` Oa(l)
4: else
5: if R(E, {t | t is a task in E and l ∈ ann(t)}) = ⊥

then
6: return (P, ann) `F Oa(l)
7: else
8: return (P, ann) `P Oa(l)
9: end if

10: end if

Due to the nature of an achievement obligation Oa(l), it is
satisfied when a task whose annotation contains the condition
l of the obligation is executed. By removing all the tasks
containing l in their annotations, the remaining executions are
the ones which do not fulfill the obligation. If there are no
possible executions remaining, this means that every execution
has to go through at least a task having l annotated, thus the
process is fully compliant with the obligation. In case there
are no tasks having l in their annotation, then no execution
can fulfill the obligation and the process is not compliant. At
last if some tasks are removed and some possible executions
remain, then the process is partially compliant.

Complexity of Algorithm 1: Assuming that the size of
each annotation is O(1) (independent of the number of tasks),
then the time of Algorithm 1 is dominated by the time for the
task removal algorithm which is linear in the number of tasks
of the process.

B. Algorithm for Global Maintenance Obligations

We first introduce the notion of first tasks, which are the
set of tasks of a process that can be scheduled at the beginning
of an execution.

Definition 11 (First): Given a process block E, First(E)
returns a set of tasks as follows:

1: if E = t then
2: return {t}
3: end if
4: if E = SEQ(E1, . . . , Ek) where k ≥ 2 then
5: return First(E1)
6: end if
7: if E = AND(E1, . . . , Ek) where k ≥ 2 then
8: return

⋃k
i=1 First(Ei)

9: end if
10: if E = XOR(E1, . . . , Ek) where k ≥ 2 then
11: return

⋃k
i=1 First(Ei)

12: end if

Given a block E and a task t ∈ First(E), let X denote the
set of executions in E that have t as the first task. The function
Task Rooting returns a subset of the executions contained in
X . In Lemma 4 we provide a sketch of a proof showing that
the approximation considered by Task Rooting does not affect
the result of checking compliance for maintenance obligations.

Definition 12 (Task Rooting): Given a process block E
and a task t ∈ First(E), task rooting F (E, t) returns a new
process block as follows:

1: if E = t then

2: return E
3: end if
4: if E = SEQ(E1, . . . , Ek) then
5: return SEQ(F (E1, t), E2, . . . , Ek)
6: end if
7: if E = XOR(E1, . . . , Ek) then
8: return F (Ep, t) where Ep ∈ {E1, . . . , Ek} and t ∈ Ep

9: end if
10: if E = AND(E1, . . . , Ek) then
11: return SEQ(F (Ep, t),AND(Ei1 , . . . , Eik−1

)), where
{i1, . . . , ik−1, p} = {1, . . . , k} and t ∈ Ep

12: end if

Lemma 4 (Task Rooting): Let E be a block, t be a task
such that t ∈ First(E) and, X be the set of executions of E
that start with t. We denote with θ ∈ ΘX a trace associated to
an ε ∈ X according to the annotation an ann:

• ((start, (F (E, t), ann), end) `F Om(l)) if and only if
(∀θ ∈ ΘX , θ ` Om(l));

• ((start, (F (E, t), ann), end) `P Om(l)) if and only if
(∃θ ∈ ΘX , θ ` Om(l));

• ((start, (F (E, t), ann), end) 6` Om(l)) if and only if
(∀θ ∈ ΘX , θ 6` Om(l))

Proof: Given a process P , we know that X contains all
executions of P starting with an arbitrary task t. The function
task rooting returns an approximation of the set X only in the
case where t belongs to an AND block. The executions that
are contained in the process block returned by task rooting are
the ones which have as a prefix the brach of the AND block
starting with t. The executions lost by task rooting are the ones
where some tasks from other branches in the AND block are
interleaved with the ones belonging to the branch containing
t. We can focus on the serialization of the AND block because
it is where some executions are lost.

We distinguish now two cases: l 6∈ ann(t) and l ∈ ann(t).
In the first case both the executions in X and the ones given
by task rooting are not compliant according to Definition 8.
In the second case we have to analyze the remainder tasks in
the AND block.

In case none of the remainder tasks annotates l̃, then we
can safely assume that in both cases the AND block is fully
compliant with the maintenance obligation. In case where some
of the tasks contain in their annotation l̃, we have to analyze
two cases: the first where such tasks are not avoidable, i.e.
these tasks are not within an XOR block, which means that l
would stop holding due to the execution of one of these tasks,
thus the AND block would be not compliant in this case both
in X and task rooting, because at least one task containing l̃
had to be executed. In case such tasks are avoidable, thus both
for X and task rooting exists at least an execution which is
compliant with the maintenance obligation, making the AND
block partially compliant with the obligation.

It is not necessary to analyze the part of the executions
following the AND block because no more approximations
are involved, thus after having shown that the approximation
on the AND block does not alter the result, we can say that the
result obtainable by checking a maintenance obligation after



applying task rooting, would be the same as checking it on the
set X .

Algorithm 2: Given an annotated process (P, ann) and an
atomic maintenance obligation Om(l), this algorithm returns
whether (P, ann) is compliant with Om(l).

1: Suppose P = start E end
2: TF = First(E)
3: Tl̃ = {t ∈ P : l̃ ∈ ann(t)}
4: if ∀t in TF , l ∈ ann(t) and Tl̃ == ∅ then
5: return (P, ann) `F Om(l)
6: else
7: for each t ∈ TF such that l ∈ ann(t) do
8: if R(F (E, t), Tl̃) 6= ⊥ then
9: return (P, ann) `P Oa(l)

10: end if
11: end for each
12: return (P, ann) 6` Om(l)
13: end if

Algorithm 2 identifies the set of the tasks that can appear
at first in the possible executions of the process in analysis.
From such set the algorithm identifies which executions have
the possibility to be compliant by starting with a task having
l annotated. For each execution that can be compliant, Task
Removal is used to verify that they don’t contain a task with
l̃ annotated.

Complexity of Algorithm 2: Both R and F can be
computed in time O(n) where n is the number of tasks in
E. Thus the call to R on line 8 can also be computed in time
O(n). Assuming each annotation has size O(1) we then see
that the overall complexity is O(n2).

IV. CONCLUSION

In this paper we proposed two efficient algorithms capable
of verifying if a well-structured process is compliant with an
obligation that is in force during the whole execution of the
process and does not contain compensations. We are aware of
the existence of other approaches to verify compliance. The
majority of approaches propose various logics for compliance
(e.g., deontic logic [6], linear temporal logic [18], clause based
logic/logic programming [4], [5], extensions of BPMN lan-
guages [2]). However according to [3], the general compliance
problem of checking whether a process fulfills a regulatory
framework is computationally infeasible, and we decided to
focus our work on tractable sub-problems.

In spite of the simplicity of the sub-problem tackled in
the present paper, to the best of our knowledge, this is the
first systematic investigation on the complexity of process
compliance. Some solutions like [7] provides a linear time
algorithm to check whether a single trace is compliant, and
[9] gives approximate solutions in linear time.

As future work we plan to extend the size of the sub-
problems and provide solutions by integrating our algorithms
in an abstract framework for the general problem of com-
pliance for structured business processes and designing new
algorithms if needed.

ACKNOWLEDGEMENTS
NICTA is funded by the Australian Government as represented

by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program. Silvano Colombo Tosatto is supported
by the National Research Fund, Luxembourg.

REFERENCES

[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the
logic of theory change: Partial meet contraction and revision functions.
Journal of Symbolic Logic, 50(2):510–530, 1985.

[2] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance
checking using bpmn-q and temporal logic. In Marlon Dumas, Manfred
Reichert, and Ming-Chien Shan, editors, BPM, volume 5240 of Lecture
Notes in Computer Science, pages 326–341. Springer, 2008.

[3] Silvano Colombo Tosatto, Guido Governatori, Pierre Kelsen, and Leen-
dert van der Torre. Business process compliance is hard. Technical
report, NICTA, 2012.

[4] Aditya Ghose and George Koliadis. Auditing business process com-
pliance. In Bernd J. Krämer, Kwei-Jay Lin, and Priya Narasimhan,
editors, ICSOC, volume 4749 of Lecture Notes in Computer Science,
pages 169–180. Springer, 2007.

[5] Guido Governatori, Jörg Hoffmann, Shazia Wasim Sadiq, and Ingo
Weber. Detecting regulatory compliance for business process models
through semantic annotations. In Danilo Ardagna, Massimo Mecella,
and Jian Yang, editors, Business Process Management Workshops,
volume 17 of Lecture Notes in Business Information Processing, pages
5–17. Springer, 2008.

[6] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance
checking between business processes and business contracts. In Patrick
C. K. Hung, editor, 10th International Enterprise Distributed Object
Computing Conference (EDOC 2006), pages 221–232. IEEE, 2006.

[7] Guido Governatori and Antonino Rotolo. Norm compliance in business
process modeling. In Proceedings of the 4th International Web Rule
Symposium: Research Based and Industry Focused (RuleML 2010),
volume 6403 of LNCS, pages 194–209. Springer, 2010.

[8] Guido Governatori and Shazia Sadiq. The journey to business process
compliance. In Jorge Cardoso and Wil van der Aalst, editors, Handbook
of Research on BPM, chapter 20, pages 426–454. IGI Global, 2009.

[9] Jörg Hoffmann, Ingo Weber, and Guido Governatori. On compliance
checking for clausal constraints in annotated process models. Informa-
tion Systems Frontiers, 14(2):155–177, 2012.

[10] Andrew Jones and José Carmo. Deontic logic and contrary-to-duties. In
Dov Gabbay and Franz Guenthner, editors, Handbook of Philosophical
Logic, pages 265–343. Kluwer Academic Publishers, 2002.

[11] G. Keller and T. Teufel. SAP R/3 Process Oriented Implementation:
Iterative Process Prototyping. ddison-Wesley, 1998.

[12] M.E. Kharbili. Business process regulatory compliance management
solution frameworks: A comparative evaluation. In Asia-Pacific Confer-
ence on Conceptual Modelling (APCCM 2012), volume 130 of CRPIT,
pages 23–32. ACS, 2012.

[13] Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Christoph Bussler.
On structured workflow modelling. In Proceedings of the 12th Inter-
national Conference on Advanced Information Systems Engineering,
CAiSE ’00, pages 431–445, London, UK, UK, 2000. Springer-Verlag.

[14] Artem Polyvyanyy, Luciano Garcı́a-Bañuelos, and Marlon Dumas.
Structuring acyclic process models. Information Systems, 37(6):518–
538, 2012.

[15] Henry Prakken and Marek Sergot. Dyadic deontic logic and contrary-
to-duty obligations, 1997.

[16] Dumitru Roman and Michael Kifer. Reasoning about the behaviour
of semantic web services with concurrent transaction logic. In VLDB,
pages 627–638, 2007.

[17] Shazia Sadiq and Guido Governatori. Managing regulatory compliance
in business processes. In Jan van Brocke and Michael Rosemann, edi-
tors, Handbook of Business Process Management, volume 2, chapter 8,
pages 157–173. Springer, Berlin, 2010.

[18] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declar-
ative workflows: Balancing between flexibility and support. Computer
Science - R&D, 23(2):99–113, 2009.


