
Algorithms for Basic Compliance Problems

Silvano Colombo Tosattoa Marwane El Kharbilia Guido Governatorib

Pierre Kelsena Qin Maa Leendert van der Torrea

a University of Luxembourg, Luxembourg
b NICTA, Australia

Abstract
The present paper focus on the problems to verify compliance for global achievement and maintenance
obligations. We first introduce the elements needed to identify and study this fragment of compliance,
such as processes and obligations. Afterwards we define the procedures and the algorithms to efficiently
deal with this fragment of the compliance problem. Both algorithms proposed in the paper belongs to the
P complexity class.

1 Introduction
Compliance initiatives are becoming more and more important in enterprises with the increase of the number
of regulatory frameworks explicitly requiring businesses to show compliance with them. Most compliance
solutions are ad hoc solutions and typically are time consuming to implement and to maintain. A classifi-
cation of compliance in both preventive and detective activities is proposed in [10]. Auditing is a typical
example of a detective activity. Preventive solutions, on the other hand, consider the activities to be done
to achieve business objectives and their interactions with and the impact on them of the obligations and
prohibitions imposed on a business by a normative framework. The proposal in [7] advances a compliance-
by-design methodology. The methodology is based on the use of business process models to describe the
activities of an enterprise and to couple them with formal specifications of the regulatory frameworks regu-
lating the business. Business process models describe the activities to be done, and the order in which the
task can be executed. Several approaches to handle compliance and to formalize normative requirements,
based on different logical formalisms have been proposed (see for example [5, 9, 3]).

The aim of this paper is not to propose yet another formalism for business process compliance, but to
offer two efficient algorithms to deal with its most basic problems. In doing so, it allows scholars to reuse
these basic algorithms in more complex frameworks thanks to their low computational complexity. In [2] it
is shown that, in general, even for ‘well behaved’ classes of processes (i.e., structured processes), checking
whether a process is compliant with a (formalised) legislation, is computationally hard. In the rest of paper
we show how to use the abstract framework, to identify classes of compliance problems for which efficient
solutions are possible.

The paper is structured as follows: Section 2 defines the compliance problem by introducing the def-
initions of processes and obligations. Section 3 describes the algorithms and their complexity. Section 4
concludes the paper.

2 Background
The scope of this paper is to decide wether a process is compliant with a given global obligation. In this
section we formally describe processes and global obligations.

2.1 Processes
A process models a collection of methods to perform an activity. For instance an activity can be preparing
coffee, a process modeling such activity would comprehend many ways to prepare coffee, such as using

lyophilized coffee, brewing it, etc.
A process is composed of tasks and coordinators. Tasks represents the actions that can be done during the

execution of a process. For instance considering the process that models how to prepare coffee, an action
can be to heat the water. Coordinators are used to define the valid executions of a process. For instance
coordinators can define that a certain task has to be done before another one or which tasks are mutually
exclusive. Arrows connecting the elements of a process identify a general order in which the elements can
be executed.

To represent a process we use a fragment of BPMN1. The fragment considered uses only AND and XOR
coordinators in addition to start and end. The AND coordinator is used to coordinate tasks which can be
concurrently executed. The XOR is used to define which tasks are mutually exclusive. AND and XOR
coordinators consist in blocks of tasks within the process which are enclosed between two coordinators of
the same type.

We consider only processes which do not contain cycles and are structured. A process is structured if it
consists of hierarchically nested blocks as depicted by the following classification.

Definition 1 (Process) A structured business process P is a business process generated by the following
grammar given in the format of an graphical extension of BNF (with the vertical lines indicating alternative
for the right hand side):

::=

::=

Task Sequence Block

……

…… ……

AND Block XOR Block

t

E

E1 E1 E1

, …… ,

,E E1

Ek

Ek Ek

Ek

SP

Process Block

The coordinator , , ,{ }is called start and the coordinator, , ,{ }is called end. The coordinator, , ,{ }is called
ANDsplit in case of multiple outgoing arrows and ANDjoin in case of multiple incoming arrows. A pair of
ANDsplit and ANDjoin coordinators groups a set of sub-blocks indicating a logical relationship to activate
all the sub-blocks concurrently. Finally, the coordinator, , ,{ }is called XORsplit in case of multiple outgoing
arrows and XORjoin in case of multiple incoming arrows. A pair of XORsplit and XORjoin coordinators
groups a set of sub-blocks indicating a logical relationship to activate exactly one of the sub-blocks, chosen
arbitrarily.

We assume that all the tasks in a structured business process carry a distinct identity that constitutes a
key part of the label of a task. Therefore, a task t can directly be referenced by its label t. Similarly,

(process) block identities are also distinct hence a block E can directly be referenced by its label E.
As a consequence, for simplicity, we also allow a textual way to reference the graphical representation of
structured business processes.

Example 1 In Fig. 1 we provide an example of a process containing four tasks labeled t1, . . . , t4. Within
the process it is shown an XOR block containing in different branches the tasks t1 and t2. The XOR block is
nested within an AND block, forming one of its branches and task t3 forming the other one. The AND block
is preceded by the start coordinator and followed by task t4 which in turn is followed by the end coordinator.

Given a process modeling an activity, an execution of such a process represents one way to perform it.
An execution is a valid serialization of a subset of tasks composing the process. A serialization is considered
valid if it starts from the start coordinator and terminates at the end. In addition a valid serialization has to
comply with the semantics of the coordinators and the connections between the tasks.

A process is defined as P = start E end. An execution of P is equivalent to executing the block E
within start and end. Thus we will provide the formal semantics for executing blocks which can be used for
process execution as well.

1Business Process Model Notation, Version 2.0, http://www.omg.org/spec/BPMN/2.0

t4

t3

t1

t2

Figure 1: Example of a process

Definition 2 (Block Execution) A process block E can be serialized into a set of finite sequences of tasks ,
written Σ(E), defined by the following structural recursion. We call each sequence in Σ(E) an execution of
E, ranged over by ε.

1. E = t: Σ(E) = {(t)};
2. E = SEQ(E1, . . . , Ek): Σ(E) = {ε1; . . . ; εk | ε1 ∈ Σ(E1), . . . , εk ∈ Σ(Ek)}, where ; stands for

sequence concatenation.
3. E = XOR(E1, . . . , Ek): Σ(E) = Σ(E1) ∪ . . . ∪ Σ(Ek);
4. E = AND(E1, . . . , Ek): Σ(E) = {(t1, . . . , tn)} such that

(a) ∀i, 1 ≤ i ≤ k, ∃εi ∈ Σ(Ei) such that {t1, . . . , tn} =
⋃

1≤i≤k Tasks(εi)
(b) ∀Ei ∈ E = AND(E1, . . . , Ek), th, tj ∈ Ei|th < tj → ∀ε ∈ Σ(E), th > tj .

Namely Σ(E) is the set of sequences each of which merges a sequence of Σ(E1), . . . , and of Σ(Ek).
Merging a set of sequences gives rise to a sequence that includes all the elements of the operand
sequences. Moreover, the ordering in the result sequence should be compatible with the ordering in
the operand sequences.

In an arbitrary process and its possible executions. If the process is conform with Definition 1, then a
task belonging to the process appears in at least one of its executions. This means that each task contained
in a process has the possibility to be executed as stated in the following lemma.

Lemma 1 (Block Execution) Given a process block E and a task t in E, ∃ε ∈ Σ(E) such that t ∈ ε.

Example 2 Taking into account the process in Fig. 1 as P = start E end. We have that Σ(E) =
{ε1, ε2, ε3, ε4} where ε1 = (t1, t3, t4), ε2 = (t2, t3, t4), ε3 = (t3, t1, t4) and ε4 = (t3, t2, t4). Σ(E) contains
the four possible executions of the process P . An execution not contained in Σ(E), like ε5 = (t3, t4, t1),
is not a valid execution of P . In this particular case one of the reasons why ε5 is not a valid execution is
because after t4 the task t1 is executed, which is not possible because t1 belongs to an XOR block nested in
an AND block that precedes the task t4 in a sequence block.

The state of the process changes while executing the tasks. We represent the state of a process as an
incomplete consistent set of literals. Given a language, a set is called incomplete if there exists a literal of
the language such that neither literal nor its complement belongs to the set.

Definition 3 (Consistent Literal Set) Given a literal l, let l̃ be its complement. A set of literals L is consis-
tent if and only if it does not contain l and l̃ at the same time for every literal l ∈ L.

Example 3 In a language of literals containing {α, β, γ}, the following states: L1 = {α, β̃}, L2 =
{α̃, β̃, γ}, L3 = {α, α̃, β}. L1 is an incomplete state because it does not contain either γ or its com-
plement. L1 is also consistent because it does not contain a literal and its complement. L2 is a complete
state because it contains all the literals or their complement belonging to the alphabet and L3 in inconsistent
because it contains both α and α̃.

Executing a task can change the current state of the process. Such changes depend on a consistent set of
literals associated to the task being executed. We refer to a task with an associated set of literals as annotated
task. The set of literals of an annotated task indicates the postconditions that have to hold after the task is
executed. A process containing annotated tasks is called an annotated process.

Definition 4 (Annotated Process) An annotated process is a pair: (P, ann), where P is a process and
ann : T → 2L is a function from the set T of P to consistent sets of literals of a language L.

t4

t3

t1

t2

{a}

{b,c}

{c,d}

{ a }~

Figure 2: Example of an annotated process

Example 4 Fig. 2 resumes the previous example shown in Fig. 1 by including annotations for its tasks. We
can see that after executing task t1, the literal a has to hold in the successive state. Annotations are not
limited to single literals: tasks t2 and t3 are both annotated by multiple literals.

The execution state of a process has to be kept consistent. This means that after the execution of an
annotated task, the literals in the set associated to such task must hold in the state but the state has to be
kept consistent. To allow such behavior, before updating the current state we remove from it the literals
which could cause inconsistencies with the ones introduced by the task execution. After this step the state
can be updated by including the literals in the set of the annotated task. Being the set of literals introduced
consistent by definition, the result is still a consistent set.

Definition 5 (Literal set update) Given two consistent sets of literals L1 and L2, the update of L1 with L2

is a set of literals defined as follows:

L1 ⊕ L2 = L1 \ {l̃ | l ∈ L2} ∪ L2

Example 5 This example shows how the state of a process is updated after executing a task. Given three
sets of literals: L1 = {a, b}, L2 = {a, b, c} and L3 = {c̃}. In case of L1 ⊕ L3 the result is the set {a, b, c̃}
which represent the union of L1 and L3. Differently if we consider L2 ⊕ L3 the result is again {a, b, c̃} but
this time the result in not equivalent to L2 ∪ L3 because L3 contains c̃ that is the complement of one of the
literals in L2. The literal c is discarded from L2 before joining it with L3 so that the result is a consistent
set. We can notice that ⊕ is not commutative because in the case L3 ⊕ L2 the result would be {a, b, c}.

During one of its possible executions, a process typically goes through several states. Each of these
states can be associated to the execution of one of the annotated tasks belonging to the execution. We call a
trace such sequence of states and tasks.

Definition 6 (Trace) The trace θ corresponding to an execution ε = (t1, . . . , tk) of an annotated process
(P, ann) is a finite sequence of pairs of the form ((t1, L1), . . . , (tk, Lk)), where L1, . . . , Lk are sets of
literals such that:

1. L1 = ann(t1);
2. Li+1 = Li ⊕ ann(ti+1), for 1 ≤ i < k.

We write Θ((P, ann)) to denote the set of traces of an annotated process, and let θ range over it.

Lemma 2 (Trace) Traces and execution of a process are in one to one correspondence.

Example 6 This example shows the traces of the annotated process (P, ann) illustrated in Fig. 2. In the
following table we show for each execution of P the corresponding trace. Each trace is represented as a
sequence of pairs where every pair represents the task executed and the state holding after its execution.

execution trace
(t1, t3, t4) ((t1, {a}), (t3, {a, c, d}), (t4, {ã, c, d}))
(t2, t3, t4) ((t2, {b, c}), (t3, {b, c, d}), (t4, {ã, b, c, d}))
(t3, t1, t4) ((t3, {c, d}), (t1, {a, c, d}), (t4, {ã, c, d}))
(t3, t2, t4) ((t3, {c, d}), (t2, {b, c, d}), (t4.{ã, b, c, d}))

2.2 Obligations
A trace is said to be compliant if it respects a given global obligation. We use a subset of Process Compliance
Logic (PCL) [6] to specify the global obligations.

A global obligation is an obligation that holds from the start till the end of a process. There are two
different types of global obligations: achievement and maintenance.

Definition 7 (Global Obligations) Given a literal l as the condition of a global obligation O, we represent
the two types of obligations as follows:

O ::= Oa(l) Achievement Obligation
| Om(l) Maintenance Obligation

The condition of an achievement obligation, has to be verified in at least one state of the trace between
the start and the end of a trace. An achievement obligation is violated if no state before the end of the trace
satisfies the condition.

For maintenance obligations, every state between the start and the end of a trace has to fulfill the condi-
tion. A maintenance obligation is violated as soon as a state does not verify the condition.

Definition 8 (Global Obligation Fulfillment) Given a global obligationO and a trace θ = ((t1, L1), . . . , (tk, Lk)),
θ fulfills O (θ ` O) iff:

• O = Oa(l) θ ` Oa(l) iff ∃Li, 1 ≤ i ≤ k|l ∈ Li.
• O = Om(l) θ ` Om(l) iff ∀Li, 1 ≤ i ≤ k|l ∈ Li.

2.3 Process Compliance
Checking if a process is compliant with an obligation can return three different results. A process is fully
compliant if every trace of the process is compliant with the obligation. A process is partially compliant if
there exists a trace compliant with the obligation. If none of the traces of a process are compliant with the
obligation, then the process is not compliant.

Definition 9 (Process Compliance) Given an annotated process (P, ann) and a global obligation O
• Full compliance (P, ann) `F O iff ∀θ ∈ Θ((P, ann)), θ ` O.
• Partial compliance (P, ann) `P O iff ∃θ ∈ Θ((P, ann)), θ ` O.
• Not compliant (P, ann) 6` O iff 6 ∃θ ∈ Θ((P, ann)), θ ` O.

3 Algorithms and Complexity
In this section we present the algorithms to verify the compliance of a process with respect to a global
obligation. We design two algorithms, one for each type of global obligation.

3.1 Algorithm for Global Achievement Obligations
The algorithm for achievement obligations uses the function Task Removal. This function is used to remove
a set of tasks from a process. By removing some tasks, the executions that contain that task are no longer
allowed. In some cases by removing one or more tasks from a block it is possible that no executions remain
available, if this is the case the function does not return a process block but ⊥.

Definition 10 (Task Removal) Given a process P = start E end and a set of tasks T , task removal
R(E, T) returns either a new process block E′ or ⊥ as follows:

1. E = t: if t ∈ T then return ⊥ else return E;
2. E = SEQ(E1, . . . , Ek):

if ∃i, 1 ≤ i ≤ k such that R(Ei, T) = ⊥ then return ⊥,
else return SEQ(R(E1, T), . . . , R(Ek, T));

3. E = XOR(E1, . . . , Ek):
if ∀i, 1 ≤ i ≤ k, R(Ei, T) = ⊥ then return ⊥,
else if ∃!i, 1 ≤ i ≤ k such that R(Ei, T) 6= ⊥ then return R(Ei, T),

else return XOR(R(Em1
, T), . . . , R(Emn

, T)) for all ∀Emj
∈ {E1, . . . , Ek}|R(Emj

, T) 6= ⊥;

4. E = AND(E1, . . . , Ek):
if ∃i, 1 ≤ i ≤ k such that R(Ei, T) = ⊥ then return ⊥,
else return AND(R(E1, T), . . . , R(Ek, T)).

Lemma 3 (Task Removal) Given a process block E and a set of tasks T in this block,

1. R(E, T) = ⊥ iff ∀εi ∈ Σ(E), εi ∩ T 6= ∅;
2. otherwise, R(E, T) = E′ where:

(a) Σ(E′) ⊆ Σ(E);
(b) ∀εi ∈ Σ(E), εi ∩ T = ∅ iff εi ∈ Σ(E′), and ∀εi ∈ Σ(E′), εi ∩ T = ∅.

In other words: E′ contains exactly the traces of E that do not have tasks in T .

Algorithm 1 Given an annotated process (P, ann) and a global achievement obligation Oa(l), this algo-
rithm returns whether (P, ann) is compliant with Oa(l).

1: Suppose P = start E end.;
2: if ∀t in E, l 6∈ ann(t) then
3: return (P, ann) 6` Oa(l);
4: else
5: if R(E, {t | t is a task in E and l ∈ ann(t)}) = ⊥ then
6: return (P, ann) `F Oa(l);
7: else
8: return (P, ann) `P Oa(l);
9: end if

10: end if

Due to the nature of an achievement obligation Oa(l), it is satisfied when a task whose annotation con-
tains the condition l of the obligation is executed. By removing all the tasks containing l in their annotations,
the remaining executions are the ones which do not fulfill the obligation. If there are no possible executions
remaining, this means that every execution has to go through at least a task having l annotated, thus the
process is fully compliant with the obligation. In case there are no tasks having l in their annotation, then no
execution can fulfill the obligation and the process is not compliant. At last if some tasks are removed and
some possible executions remain, then the process is partially compliant.

Complexity of Algorithm 1: Assuming that the size of each annotation is O(1), i.e. independent of the
number of tasks. The time of Algorithm 1 is dominated by the time for the task removal algorithm which is
linear in the number of tasks of the process.

3.2 Algorithm for Global Maintenance Obligations
We first introduce the notion of first tasks, which are the set of tasks of a process that can be scheduled at
the beginning of an execution.

Definition 11 (First Task(s)) Given a process block E First(E), returns a set of tasks as follows:

• E = t: {t};
• E = SEQ(E1, . . . , Ek) where k ≥ 2: First(E1);
• E = AND(E1, . . . , Ek) where k ≥ 2:

⋃k
i=1 First(Ei);

• E = XOR(E1, . . . , Ek) where k ≥ 2:
⋃k

i=1 First(Ei).

Given a block E and a task t ∈ First(E), let X denote the set of executions in E that have t as the first
task. The function Task Rooting returns a subset of the executions contained in X . In Lemma 4 we provide
a sketch of a proof showing that the approximation considered by Task Rooting does not affect the result of
checking compliance for maintenance obligations.

Definition 12 (Task Rooting) Given a process block E and a task t ∈ First(E), task rooting F (E, t)
returns a new process block as follows:

1. E = t: return E;
2. E = SEQ(E1, . . . , Ek): return SEQ(F (E1, t), E2, . . . , Ek);
3. E = XOR(E1, . . . , Ek): return F (Ep, t) where Ep ∈ {E1, . . . , Ek} and t ∈ Ep;

4. E = AND(E1, . . . , Ek): return SEQ(F (Ep, t),AND(Ei1 , . . . , Eik−1
)), where {i1, . . . , ik−1, p} =

{1, . . . , k} and t ∈ Ep.

Lemma 4 (Task Rooting) Let E be a block, t be a task such that t ∈ First(E) and, X be the set of
executions of E that start with t. We denote with θ ∈ ΘX a trace associated to an ε ∈ X according to the
annotation an ann:

((start, (F (E, t), ann), end) `F Om(l))⇔ (∀θ ∈ ΘX , θ ` Om(l))

((start, (F (E, t), ann)end) `P Om(l))⇔ (∃θ ∈ ΘX , θ ` Om(l))
((start, (F (E, t), ann)end) 6` Om(l))⇔ (∀θ ∈ ΘX , θ 6` Om(l))

Proof 1 Given a process P , we know that X contains all executions of P starting with an arbitrary task
t. The function task rooting returns an approximation of the set X only in the case where t belongs to an
AND block. The executions that are contained in the process block returned by task rooting are the one
which have as a prefix the brach of the AND block starting with t. The executions lost by task rooting are
the ones where some tasks from other branches in the AND block are interleaved with the ones belonging
to the branch containing t. We can focus on the serialization of the AND block because it is where some
executions are lost.

We distinguish now two cases: l 6∈ ann(t) and l ∈ ann(t). In the first case both the executions in X and
the ones given by task rooting are not compliant according to Definition 8. In the second case we have to
analyze the remainder tasks in the AND block.

In case none of the remainder tasks annotates l̃, then we can safely that in both cases the AND block is
fully compliant with the maintenance obligation. In case where some of the tasks contain in their annotation
l̃, we have to analyze two cases: the first where such tasks are not avoidable, i.e. these tasks are not within an
XOR block, which means that l would stop holding due to the execution of one of these tasks, thus the AND
block would be not compliant in this case both in X and task rooting, because at least one task containing
l̃ had to be executed. In case such tasks are avoidable, thus both for X and task rooting exists at leas an
execution which is compliant with the maintenance obligation, making the AND block partially compliant
with the obligation.

It is not necessary to analyze the part of the executions following the AND block because no more
approximations are involved, thus after having shown that the approximation on the AND block does not
alter the result, we can say that the result obtainable by checking a maintenance obligation after applying
task rooting, would be the same as checking it on the set X .

Algorithm 2 Given an annotated process (P, ann) and an atomic maintenance obligation Om(l), this al-
gorithm returns whether (P, ann) is compliant with Om(l).

1: Suppose P = start E end;
2: res = (P, ann) 6` Om(l);
3: TF = First(E);
4: Tl̃ = {t ∈ P : l̃ ∈ ann(t)};
5: if ∀t in TF , l ∈ ann(t) and Tl̃ == ∅ then
6: return (P, ann) `F Om(l);
7: else
8: for each t ∈ TF such that l ∈ ann(t) do
9: if R(F (E, t), Tl̃) 6= ⊥ then

10: return (P, ann) `P Oa(l);
11: end if
12: end for each
13: return (P, ann) 6` Om(l);
14: end if

Algorithm 2 identifies the set of the tasks that can appear as first in the possible executions of the process
in analysis. From such set the algorithm identifies which executions has the possibility to be compliant by
starting with a task having l annotated. For each execution that can be compliant, Task Removal is used to
verify that they don’t contain a task with l̃ annotated.

Complexity of Algorithm 2: Both R and F can be computed in time O(n) where n is the number of
tasks in E. Thus the call to R on line 9 can also be computed in time O(n). Assuming each annotation has
size O(1) we then see that the overall complexity is O(n2).

4 Conclusion
Business process compliance received increased attention in the field of business process modeling in the
past few years. The majority of approaches propose some logics for compliance (e.g., deontic logic [5],
linear temporal logic [11], clause based logic/logic programming [3, 4], extensions of BPMN languages [1]).
However, to the best of our knowledge, this is a first systematic investigation on the complelxity of business
process compliance. [6] provides a linear time algorithm to check whether a single trace is compliant, and
[8] gives approximate solutions in linear time. [2] shows that the problem of checking whether a process is
compliant or not is computationally infeasible. In this paper we have identified some tractable sub-problems
and their solutions.

As future work we plan to identify further problems and provide solutions by integrating our algorithms
in an abstract framework or designing new ones if needed.

References
[1] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking using bpmn-q and

temporal logic. In Marlon Dumas, Manfred Reichert, and Ming-Chien Shan, editors, BPM, volume
5240 of Lecture Notes in Computer Science, pages 326–341. Springer, 2008.

[2] Silvano Colombo Tosatto, Guido Governatori, Pierre Kelsen, and Leendert van der Torre. Business
process compliance is hard. Technical report, NICTA, 2012.

[3] Aditya Ghose and George Koliadis. Auditing business process compliance. In Bernd J. Krämer, Kwei-
Jay Lin, and Priya Narasimhan, editors, ICSOC, volume 4749 of Lecture Notes in Computer Science,
pages 169–180. Springer, 2007.

[4] Guido Governatori, Jörg Hoffmann, Shazia Wasim Sadiq, and Ingo Weber. Detecting regulatory com-
pliance for business process models through semantic annotations. In Danilo Ardagna, Massimo Me-
cella, and Jian Yang, editors, Business Process Management Workshops, volume 17 of Lecture Notes
in Business Information Processing, pages 5–17. Springer, 2008.

[5] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance checking between business pro-
cesses and business contracts. In Patrick C. K. Hung, editor, 10th International Enterprise Distributed
Object Computing Conference (EDOC 2006), pages 221–232. IEEE, 2006.

[6] Guido Governatori and Antonino Rotolo. Norm compliance in business process modeling. In Proceed-
ings of the 4th International Web Rule Symposium: Research Based and Industry Focused (RuleML
2010), volume 6403 of LNCS, pages 194–209. Springer, 2010.

[7] Guido Governatori and Shazia Sadiq. The journey to business process compliance. In Jorge Cardoso
and Wil van der Aalst, editors, Handbook of Research on BPM, chapter 20, pages 426–454. IGI Global,
2009.

[8] Jörg Hoffmann, Ingo Weber, and Guido Governatori. On compliance checking for clausal constraints
in annotated process models. Information Systems Frontiers, 14(2):155–177, 2012.

[9] Dumitru Roman and Michael Kifer. Reasoning about the behaviour of semantic web services with
concurrent transaction logic. In VLDB, pages 627–638, 2007.

[10] Shazia Sadiq and Guido Governatori. Managing regulatory compliance in business processes. In Jan
van Brocke and Michael Rosemann, editors, Handbook of Business Process Management, volume 2,
chapter 8, pages 157–173. Springer, Berlin, 2010.

[11] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative workflows: Balancing
between flexibility and support. Computer Science - R&D, 23(2):99–113, 2009.

